Count a * b
推式子
f(n)=∑i=0n−1∑j=0n−1n∤ij=n2−∑i=1n∑j=1nn∣ij=n2−∑i=1n∑j=1nngcd(i,n)∣igcd(i,n)j=n2−∑i=1nnngcd(i,n)=n2−∑i=1ngcd(i,n)=n2−∑d∣nd∑i=1n(gcd(i,n)==d)=n2−∑d∣nd∑i=1nd(gcd(i,nd)==1)=n2−∑d∣ndϕ(nd)f(n) = \sum_{i= 0} ^{n - 1} \sum_{j = 0} ^ {n - 1} n \nmid ij\\ = n ^ 2 - \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} n \mid ij\\ = n ^ 2 - \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{n}{gcd(i, n)} \mid \frac{i}{gcd(i, n)}j\\ = n ^ 2 - \sum_{i = 1} ^{n} \frac{n}{\frac{n}{gcd(i, n)}}\\ = n ^ 2 - \sum_{i = 1} ^{n} gcd(i, n)\\ = n ^ 2 - \sum_{d \mid n} d \sum_{i = 1} ^{n} (gcd(i, n) == d)\\ = n ^ 2 - \sum_{d \mid n} d \sum_{i = 1} ^{\frac{n}{d}} (gcd(i, \frac{n}{d}) == 1)\\ = n ^ 2 - \sum_{d \mid n} d \phi(\frac{n}{d})\\ f(n)=i=0∑n−1j=0∑n−1n∤ij=n2−i=1∑nj=1∑nn∣ij=n2−i=1∑nj=1∑ngcd(i,n)n∣gcd(i,n)ij=n2−i=1∑ngcd(i,n)nn=n2−i=1∑ngcd(i,n)=n2−d∣n∑di=1∑n(gcd(i,n)==d)=n2−d∣n∑di=1∑dn(gcd(i,dn)==1)=n2−d∣n∑dϕ(dn)
g(n)=∑m∣nf(m)=∑m∣nm2−∑m∣n∑d∣mdϕ(md)=∑m∣nm2−∑d∣nd∑d∣m,m∣nϕ(md)=∑m∣nm2−∑d∣nd∑k∣ndϕ(k)=∑m∣nm2−∑d∣nng(n) = \sum_{m \mid n} f(m)\\ = \sum_{m \mid n} m ^ 2 - \sum_{m \mid n} \sum_{d \mid m} d \phi(\frac{m}{d})\\ = \sum_{m \mid n} m ^ 2 - \sum_{d \mid n} d \sum_{d \mid m, m \mid n} \phi(\frac{m}{d})\\ = \sum_{m \mid n} m ^ 2 - \sum_{d \mid n} d \sum_{k \mid \frac{n}{d}} \phi(k)\\ = \sum_{m \mid n} m ^ 2 - \sum_{d \mid n}n\\ g(n)=m∣n∑f(m)=m∣n∑m2−m∣n∑d∣m∑dϕ(dm)=m∣n∑m2−d∣n∑dd∣m,m∣n∑ϕ(dm)=m∣n∑m2−d∣n∑dk∣dn∑ϕ(k)=m∣n∑m2−d∣n∑n
有约数个数等于∏i=1sum(numi+1)\prod _{i = 1} ^{sum}(num_i + 1)∏i=1sum(numi+1)
约数之和等于∏i=1sum(1+pi1+pi2+……+pinumi)\prod _{i = 1} ^{sum}(1 + p_i ^ {1} + p_i ^{2} + …… + p_i ^{num_i})∏i=1sum(1+pi1+pi2+……+pinumi)
约数平方之和等于∏i=1sum(1+pi2+pi4+……+pi2numi)\prod _{i = 1} ^{sum}(1 + p_i ^ {2} + p_i ^{4} + …… + p_i ^{2num_i})∏i=1sum(1+pi2+pi4+……+pi2numi)
可以推导,也就是多个等比数列求前n项和,然后累乘。
代码
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}const int N = 1e5 + 10;ull prime[N];
int cnt;bool st[N];void init() {for(int i = 2; i < N; i++) {if(!st[i]) prime[cnt++] = i;for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;}}
}ull quick_pow(ull a, int n) {ull ans = 1;while(n) {if(n & 1) ans = ans * a;a = a * a;n >>= 1;}return ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();int T = read();while(T--) {ull n = read(), m = n;ull ans = 1, sum = 1;for(int i = 0; i < cnt && prime[i] * prime[i] <= n; i++) {if(n % prime[i]) continue;int num = 0;while(n % prime[i] == 0) {n /= prime[i];num++;}ull res = 1 + prime[i] * prime[i] * ((quick_pow(prime[i], 2 * num) - 1) / (prime[i] * prime[i] - 1));ans *= res;sum *= 1ull * (num + 1);}if(n != 1) {ans *= 1 + 1ull * n * n; sum *= 2ull;}printf("%llu\n", ans - sum * m);}return 0;
}