K Sum
推式子
Fn(k)=∑l1=1n∑l2=1n⋯∑lk=1n(gcd(l1,l2,…,lk))2=∑d=1nd2∑l1=1nd∑l2=1nd⋯∑lk=1nd(gcd(l1,l2,…,lk)=1)=∑d=1nd2∑l1=1nd∑l2=1nd⋯∑lk=1nd∑t∣gcd(l1,l2,…,lk)μ(t)=∑d=1nd2∑t=1ndμ(t)(ntd)2另T=td=∑T=1n(nT)k∑d∣Td2μ(Td)∑i=2nFn(i)=∑T=1n∑i=2k(nT)i∑d∣Td2μ(Td)到这一步前面的一部分只要对等比数列求和加上欧拉降幂就行后面是一个积性函数前缀和,我们可以考虑通过杜教筛求解。f(n)=∑d∣nd2μ(nd)f(n)=(μ∗id2)(n)(f∗I)(n)=(μ∗I∗id2)(n)=id2(n)∑i=1ni2=∑i=1n∑d∣if(d)=∑i=1n∑d=1nif(d)=∑i=1nS(ni)S(n)=∑i=1ni2−∑i=2nS(ni)还是写一下等比数列的求和公式吧∑T=1n∑i=2knT((nT)k−1)nT−1−nT然后注意特判一下公比为1的特殊情况,因为这个给wa了一发。F_n(k) = \sum_{l_1 = 1} ^{n} \sum_{l_2 = 1} ^{n} \dots \sum_{l_k = 1} ^{n} (gcd(l_1, l_2,\dots, l_k)) ^ 2\\ = \sum_{d = 1} ^{n} d ^ 2 \sum_{l_1 = 1} ^{\frac{n}{d}} \sum_{l_2 = 1} ^{\frac{n}{d}} \dots \sum_{l_k = 1} ^{\frac{n}{d}} (gcd(l_1, l_2,\dots, l_k) = 1)\\ = \sum_{d = 1} ^{n} d ^ 2 \sum_{l_1 = 1} ^{\frac{n}{d}} \sum_{l_2 = 1} ^{\frac{n}{d}} \dots \sum_{l_k = 1} ^{\frac{n}{d}} \sum_{t \mid gcd(l_1, l_2,\dots, l_k)} \mu(t)\\ = \sum_{d = 1} ^{n}d ^ 2 \sum_{t = 1} ^{\frac{n}{d}} \mu(t) (\frac{n}{td}) ^ 2\\ 另T = td\\ = \sum_{T = 1} ^{n} (\frac{n}{T}) ^ k \sum_{d \mid T} d ^ 2 \mu(\frac{T}{d})\\ \sum_{i = 2} ^{n} F_n(i) = \sum_{T = 1} ^{n} \sum_{i = 2} ^{k} (\frac{n}{T}) ^ i \sum_{d \mid T} d ^ 2 \mu(\frac{T}{d})\\ 到这一步前面的一部分只要对等比数列求和加上欧拉降幂就行\\后面是一个积性函数前缀和,我们可以考虑通过杜教筛求解。 \\f(n) = \sum_{d \mid n} d ^ 2 \mu(\frac{n}{d})\\ f(n) = (\mu * id ^ 2)(n)\\ (f * I)(n) = (\mu * I * id ^ 2)(n) = id ^ 2(n)\\ \sum_{i = 1} ^{n} i ^ 2 = \sum_{i = 1} ^{n} \sum_{d \mid i} f(d) = \sum_{ i =1} ^{n} \sum_{d = 1} ^{\frac{n}{i}}f(d) = \sum_{i = 1} ^{n} S(\frac{n}{i})\\ S(n) = \sum_{i = 1} ^{n} i ^ 2 - \sum_{i = 2} ^{n} S(\frac{n}{i})\\ 还是写一下等比数列的求和公式吧\\ \sum_{T = 1} ^{n} \sum_{i = 2} ^{k} \frac{\frac{n}{T}((\frac{n}{T}) ^ k - 1)}{\frac{n}{T} - 1} - \frac{n}{T}\\ 然后注意特判一下公比为1的特殊情况,因为这个给wa了一发。 Fn(k)=l1=1∑nl2=1∑n⋯lk=1∑n(gcd(l1,l2,…,lk))2=d=1∑nd2l1=1∑dnl2=1∑dn⋯lk=1∑dn(gcd(l1,l2,…,lk)=1)=d=1∑nd2l1=1∑dnl2=1∑dn⋯lk=1∑dnt∣gcd(l1,l2,…,lk)∑μ(t)=d=1∑nd2t=1∑dnμ(t)(tdn)2另T=td=T=1∑n(Tn)kd∣T∑d2μ(dT)i=2∑nFn(i)=T=1∑ni=2∑k(Tn)id∣T∑d2μ(dT)到这一步前面的一部分只要对等比数列求和加上欧拉降幂就行后面是一个积性函数前缀和,我们可以考虑通过杜教筛求解。f(n)=d∣n∑d2μ(dn)f(n)=(μ∗id2)(n)(f∗I)(n)=(μ∗I∗id2)(n)=id2(n)i=1∑ni2=i=1∑nd∣i∑f(d)=i=1∑nd=1∑inf(d)=i=1∑nS(in)S(n)=i=1∑ni2−i=2∑nS(in)还是写一下等比数列的求和公式吧T=1∑ni=2∑kTn−1Tn((Tn)k−1)−Tn然后注意特判一下公比为1的特殊情况,因为这个给wa了一发。
代码
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}const int N = 1e6 + 10, mod = 1e9 + 7, inv6 = 166666668;ll s[N];int prime[N], mu[N], cnt;bool st[N];ll quick_pow(ll a, ll n) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;a = a * a % mod;n >>= 1;}return ans;
}void init() {mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {mu[i] = -1;prime[cnt++] = i;}for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;mu[i * prime[j]] = -mu[i];}}// for(int i = 1; i <= 10; i++) {// cout << mu[i] << " \n"[i == 10];// }for(int i = 1; i < N; i++) {for(int j = i; j < N; j += i) {s[j] = (s[j] + 1ll * i * i % mod * mu[j / i] % mod + mod) % mod;}}// for(int i = 1; i <= 10; i++) {// cout << s[i] << " \n"[i == 10];// }for(int i = 1; i < N; i++) {s[i] = (s[i] + s[i - 1]) % mod;}
}unordered_map<int, int> ans_s;ll S(ll n) {if(n < N) return s[n];if(ans_s.count(n)) return ans_s[n];ll ans = 1ll * n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;for(ll l = 2, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans - (r - l + 1) * S(n / l) % mod + mod) % mod;}return ans_s[n] = ans;
}ll calc(ll q, ll n, ll x) {if(q == 1) return (x - 1 + mod) % mod;ll ans = q * (quick_pow(q, n) - 1) % mod * quick_pow(q - 1, mod - 2) % mod;return (ans - q + mod) % mod;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();int T; cin >> T;while(T--) {int n, k1 = 0, k2 = 0, sz; cin >> n;string str; cin >> str; sz = str.size();for(int i = 0; i < sz; i++) {k1 = (1ll * k1 * 10 + (str[i] - '0')) % (mod - 1);k2 = (1ll * k2 * 10 + (str[i] - '0')) % mod;}//公比为1的时候特判,所以记录两个k。// cout << n << " " << str << endl;ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);// cout << l << " " << r << endl;// cout << S(r) << " " << S(l - 1) << endl;ans = (ans + calc(n / l, k1, k2) * (S(r) - S(l - 1)) % mod + mod) % mod;// cout << ans << endl;}cout << ans << endl;// cout << endl;}return 0;
}