huntian oy
推式子
∑i=1n∑j=1igcd(ia−ja,ib−jb)(gcd(i,j)==1)=∑i=1n∑j=1i(i−j)(gcd(i,j)==1)=∑i=1ni∑j=1i(gcd(i,j)==1)−∑i=1n∑j=1ij(gcd(i,j)==1)=∑i=1niϕ(i)−∑i=1niϕ(i)+(i==1)2=∑i=1niϕ(i)−(i==1)2然后套路地变成求S(n)=∑i=1niϕ(i)g(n)=nϕ(n)这里直接套用杜教筛化简得到g(1)S(n)=∑i=1n(f∗g)(i)−∑i=2f(i)S(ni)(f∗g)(i)=∑d∣nf(d)∗g(nd)=∑d∣nf(d)∗ndϕ(nd)另f(d)=d,则有S(n)=∑i=1ni2−∑i=2iS(ni)然后直接套杜教筛即可。\sum_{i = 1} ^{n} \sum_{j = 1} ^{i}gcd(i ^ a - j ^ a, i ^ b - j ^ b) (gcd(i, j) == 1)\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} (i - j)(gcd(i, j) == 1) \\ = \sum_{i = 1} ^{n} i\sum_{j = 1} ^{i} (gcd(i, j) == 1) - \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} j (gcd(i, j) == 1)\\ = \sum_{i = 1} ^{n} i \phi(i) - \sum_{i = 1} ^{n} \frac{i \phi(i) + (i == 1)}{2}\\ = \sum_{i = 1} ^{n} \frac{i \phi(i) - (i == 1)}{2}\\ 然后套路地变成求S(n) = \sum_{i = 1} ^{n} i \phi(i)\\ \\g(n) = n \phi(n)\\ 这里直接套用杜教筛化简得到g(1)S(n) = \sum_{i = 1} ^{n} (f*g)(i) - \sum_{i = 2} f(i)S(\frac{n}{i})\\ (f * g)(i) = \sum_{d \mid n} f(d) *g(\frac{n}{d}) = \sum_{d \mid n} f(d) * \frac{n}{d} \phi(\frac{n}{d})\\ 另f(d) =d,则有S(n) = \sum_{i = 1} ^{n} i ^ 2 - \sum_{i = 2} i S(\frac{n}{i})\\ 然后直接套杜教筛即可。 i=1∑nj=1∑igcd(ia−ja,ib−jb)(gcd(i,j)==1)=i=1∑nj=1∑i(i−j)(gcd(i,j)==1)=i=1∑nij=1∑i(gcd(i,j)==1)−i=1∑nj=1∑ij(gcd(i,j)==1)=i=1∑niϕ(i)−i=1∑n2iϕ(i)+(i==1)=i=1∑n2iϕ(i)−(i==1)然后套路地变成求S(n)=i=1∑niϕ(i)g(n)=nϕ(n)这里直接套用杜教筛化简得到g(1)S(n)=i=1∑n(f∗g)(i)−i=2∑f(i)S(in)(f∗g)(i)=d∣n∑f(d)∗g(dn)=d∣n∑f(d)∗dnϕ(dn)另f(d)=d,则有S(n)=i=1∑ni2−i=2∑iS(in)然后直接套杜教筛即可。
代码
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}const int N = 1e6 + 10, mod = 1e9 + 7, inv2 = 500000004, inv6 = 166666668;int prime[N], cnt;ll phi[N];bool st[N];ll quick_pow(ll a, ll n) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;n >>= 1;a = a * a % mod;}return ans;
}void init() {phi[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;phi[i] = i - 1;}for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {phi[i * prime[j]] = phi[i] * prime[j];break;}phi[i * prime[j]] = phi[i] * (prime[j] - 1);}}for(int i = 1; i < N; i++) {phi[i] = (1ll * phi[i] * i + phi[i - 1]) % mod;}
}ll calc(int n) {return 1ll * n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
}unordered_map<int, ll> ans_s;ll S(int n) {if(n < N) return phi[n];if(ans_s.count(n)) return ans_s[n];ll ans = calc(n);for(int l = 2, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans - 1ll * (r + l) * (r - l + 1) / 2 % mod * S(n / l) % mod + mod) % mod;}return ans_s[n] = ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();int T = read();while(T--) {int n = read(), a = read(), b = read();printf("%lld\n", (S(n) - 1 + mod) % mod * inv2 % mod);}return 0;
}