1227 平均最小公倍数
推式子
S(n)=∑i=1n∑j=1ilcm(i,j)i=∑i=1n∑j=1iijigcd(i,j)=∑i=1n∑j=1ijgcd(i,j)=∑i=1n∑d=1i∑j=1ijd(gcd(i,j)==d)=∑i=1n∑d=1i∑j=1idj(gcd(j,id)==1)=∑i=1n∑d=1iidϕ(id)+(id==1)2=∑d=1n∑i=1ndiϕ(i)+(i==1)2接下来就是杜教筛求∑i=1niϕ(i)了,g(1)S(n)=∑i=1n(f∗g)(i)−∑i=2nf(i)S(ni)另f(i)=i,即可求得S(n)=∑i=1ni2−∑i=2niS(nd)S(n) = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} \frac{lcm(i, j)}{i}\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} \frac{ij}{igcd(i, j)}\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} \frac{j}{gcd(i, j)}\\ = \sum_{i = 1} ^{n} \sum_{d = 1} ^{i} \sum_{j = 1} ^{i} \frac{j}{d} (gcd(i, j) == d)\\ = \sum_{i = 1} ^{n} \sum_{d = 1} ^{i} \sum_{j = 1} ^{\frac{i}{d}}j(gcd(j, \frac{i}{d}) == 1)\\ = \sum_{i = 1} ^{n} \sum_{d = 1} ^{i} \frac{\frac{i}{d} \phi(\frac{i}{d}) + (\frac{i}{d} == 1)}{2}\\ = \sum_{d = 1} ^{n} \sum_{i = 1} ^{\frac{n}{d}} \frac{i \phi(i) + (i == 1)}{2} \\ 接下来就是杜教筛求\sum_{i = 1} ^{n}i \phi(i) 了,g(1)S(n) = \sum_{i = 1} ^{n} (f * g)(i) - \sum_{i = 2} ^{n} f(i) S(\frac{n}{i})\\ 另f(i) = i,即可求得S(n) = \sum_{i = 1} ^{n} i ^ 2 - \sum_{i = 2} ^{n}iS(\frac{n}{d})\\ S(n)=i=1∑nj=1∑iilcm(i,j)=i=1∑nj=1∑iigcd(i,j)ij=i=1∑nj=1∑igcd(i,j)j=i=1∑nd=1∑ij=1∑idj(gcd(i,j)==d)=i=1∑nd=1∑ij=1∑dij(gcd(j,di)==1)=i=1∑nd=1∑i2diϕ(di)+(di==1)=d=1∑ni=1∑dn2iϕ(i)+(i==1)接下来就是杜教筛求i=1∑niϕ(i)了,g(1)S(n)=i=1∑n(f∗g)(i)−i=2∑nf(i)S(in)另f(i)=i,即可求得S(n)=i=1∑ni2−i=2∑niS(dn)
代码
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}const int N = 1e6 + 10, mod = 1e9 + 7;int prime[N], cnt;ll phi[N], inv2, inv6;bool st[N];ll quick_pow(ll a, ll n, ll mod) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;a = a * a % mod;n >>= 1;}return ans;
}void init() {phi[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;phi[i] = i - 1;}for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {phi[i * prime[j]] = phi[i] * prime[j];break;}phi[i * prime[j]] = phi[i] * (prime[j] - 1);}}for(int i = 1; i < N; i++) {phi[i] = (1ll * phi[i] * i + phi[i - 1]) % mod;}inv2 = quick_pow(2, mod - 2, mod), inv6 = quick_pow(6, mod - 2, mod);
}unordered_map<ll, ll> ans_s;ll S(ll n) {if(n < N) return phi[n];if(ans_s.count(n)) return ans_s[n];ll ans = n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;for(ll l = 2, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans - (l + r) * (r - l + 1) / 2 % mod * S(n / l) % mod + mod) % mod;}return ans_s[n] = ans;
}ll solve(ll n) {ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans + 1ll * (r - l + 1) * S(n / l) % mod) % mod;}return (ans + n) % mod;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();ll l = read(), r = read();printf("%lld\n", ((solve(r) - solve(l - 1)) % mod * inv2 % mod + mod) % mod);return 0;
}