【LOJ#6682】梦中的数论(min_25筛)

【LOJ#6682】梦中的数论

https://www.cnblogs.com/cjyyb/p/11178395.html
利用min_25筛,求解约数个数函数平方的前缀和。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314325.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于.NetCore结合docker-compose实践Gitlab-CI/CD 排坑指南

引言看过docker-compose真香的园友可能留意到当时是【把部署dll文件拷贝到生产机器】,即时打包成镜像并启动容器,并没有完成CI/CD。经过长时间实操验证,终于完成基于Gitlab的CI/CD实践,本次实践的坑位很多, 实操过程尽…

51 NOD 1227 平均最小公倍数(杜教筛)

1227 平均最小公倍数 推式子 S(n)∑i1n∑j1ilcm(i,j)i∑i1n∑j1iijigcd(i,j)∑i1n∑j1ijgcd(i,j)∑i1n∑d1i∑j1ijd(gcd(i,j)d)∑i1n∑d1i∑j1idj(gcd(j,id)1)∑i1n∑d1iidϕ(id)(id1)2∑d1n∑i1ndiϕ(i)(i1)2接下来就是杜教筛求∑i1niϕ(i)了,g(1)S(n)∑i1n(f∗g)…

【BZOJ3512】DZY Loves Math IV(杜教筛)

【BZOJ3512】DZY Loves Math IV(杜教筛) https://www.cnblogs.com/cjyyb/p/10165338.html

.NET Core很酷,你不得不知

我一直回想我的第一篇博文,那是关于多个服务的服务器平台的详细教程,它使用 GitLab CI 在 AWS 上,当时使用单个命令行进行部署, 至今回想,令人感觉很酷。前几天,我偶然听说一些软件公司的 HR 在招聘原则上拒…

51 NOD 1363 最小公倍数之和 (欧拉函数思维应用)

1363 最小公倍数之和 推式子 ∑i1nlcm(i,n)n∑i1nigcd(i,n)n∑d∣n∑i1nid(gcd(i,n)d)n∑d∣n∑i1ndi(gcd(i,nd)1)n∑d∣ndϕ(d)(d1)2\sum_{i 1} ^{n} lcm(i, n)\\ n\sum_{i 1} ^{n} \frac{i}{gcd(i, n)}\\ n \sum_{d \mid n} \sum_{i 1} ^{n} \frac{i}{d}(gcd(i, n) d)…

【BZOJ3930】选数(莫比乌斯反演倍数形式,杜教筛)

【BZOJ3930】选数 https://www.cnblogs.com/cjyyb/p/8303813.html

程序员修神之路--高并发系统设计负载均衡架构

点击上方“蓝字”关注,酷爽一夏菜菜哥,上次你给我讲的分库分表策略对我帮助很大有帮助就好,上次请我的咖啡也很好喝~呵呵,不过随着访问量的不断加大,网站我又加了nginx做负载均衡好呀,看来要进阶高级工程师…

类欧几里得算法详细推导过程(附带模板)

类欧几里得算法推导 初识 给出三种形式: f(a,b,c,n)∑i0n⌊aibc⌋f(a, b, c, n) \sum_{i 0} ^{n} \lfloor\frac{ai b}{c}\rfloorf(a,b,c,n)∑i0n​⌊caib​⌋g(a,b,c,n)∑i0ni⌊aibc⌋g(a, b, c, n) \sum_{i 0} ^{n}i \lfloor \frac{ai b}{c}\rfloorg(a,b,c…

【Luogu3768】简单的数学题(莫比乌斯反演/杜教筛/欧拉函数)

【Luogu3768】简单的数学题 https://www.cnblogs.com/cjyyb/p/8298339.html

【学习笔记】Docker - 01. Docker是啥

我只是把之前的学习笔记整理一下,贴到这里,可能会显得比较凌乱。。。1.1 啥是Docker?Docker 是一个开源项目,它被用来做构建、打包和运行程序。它是一个命令行程序,一个后台进程,也是一组使用逻辑方法来解决常见软件问…

使用 .NET CORE 创建 项目模板,模板项目,Template

场景:日常工作中,你可能会碰到需要新建一个全新的解决方案的情况(如公司新起了一个新项目,需要有全新配套的后台程序),如果公司内部基础框架较多、解决方案需要DDD模式等,那么从新起项目到各种依…

【BZOJ4916】神犇和蒟蒻(杜教筛)

【BZOJ4916】神犇和蒟蒻(杜教筛) https://www.cnblogs.com/cjyyb/p/8297338.html 杜教筛技巧

E. Number Challenge

E. Number Challenge 推式子 ∑i1a∑j1b∑k1cσ(ijk)∑i1a∑j1b∑k1c∑x∣i∑y∣j∑z∣k(gcd(x,y)1)(gcd(x,z)1)(gcd(y,z)1)∑x1a∑y1b∑z1c⌊ax⌋⌊by⌋⌊cz⌋(gcd(x,y)1)(gcd(x,z)1)(gcd(y,z)1)∑d1aμ(d)∑x1⌊ad⌋⌊adx⌋∑y1⌊bd⌋⌊bdy⌋∑z1c⌊cd⌋(gcd(x,z)1)(gcd(y,z…

时间表(日记)

2021/1/14 今天白天学习还算成功,但是晚饭后拿起手机就开始颓废了,特别是因为听相声实在是无聊而且低俗,所以又忍不住诱惑下载了b站,相比于相声b站的确是有营养的多,但是一旦激起了我的好奇心,尤其是吸引了…

谈谈surging 微服务引擎 2.0的链路跟踪和其它新增功能

一、前言surging是基于.NET CORE 服务引擎。初始版本诞生于2017年6月份,经过NCC社区二年的孵化,2.0版本将在2019年08月28日进行发布,经历二年的发展,已经全部攘括了微服务架构的技术栈,覆盖了从服务注册、服务发现、中…

2019-ACM-ICPC-南京区网络赛-E. K Sum(莫比乌斯反演 + 杜教筛)

K Sum 推式子 Fn(k)∑l11n∑l21n⋯∑lk1n(gcd(l1,l2,…,lk))2∑d1nd2∑l11nd∑l21nd⋯∑lk1nd(gcd(l1,l2,…,lk)1)∑d1nd2∑l11nd∑l21nd⋯∑lk1nd∑t∣gcd(l1,l2,…,lk)μ(t)∑d1nd2∑t1ndμ(t)(ntd)2另Ttd∑T1n(nT)k∑d∣Td2μ(Td)∑i2nFn(i)∑T1n∑i2k(nT)i∑d∣Td2μ(Td)到…

【BZOJ4028】[HEOI2015]公约数数列(分块/数量级很小法)

【BZOJ4028】[HEOI2015]公约数数列 https://www.luogu.com.cn/problem/P4108 求解最靠前的一个位置前缀gcd和前缀异或的乘积恰好等于x,并且要求支持单点修改 首先我们可以发现这个问题没法使用线段树维护,因为不仅前缀没有单调性,而且修改也…

GuGuFishtion(2018 Multi-University Training Contest 7)

GuGuFishtion 推式子 ∑a1m∑b1nϕ(a,b)ϕ(a)ϕ(b)∑a1m∑b1ngcd(a,b)ϕ(gcd(a,b))∑d1mdϕ(d)∑a1md∑b1mdgcd(a,b)1∑d1mdϕ(d)∑a1md∑b1md∑k∣gcd(a,b)μ(k)我们约定n,m&#xff0c;满足n<m∑d1ndϕ(d)∑k1ndμ(k)⌊nkd⌋⌊mkd⌋\sum_{a 1 } ^{m} \sum_{b 1 } ^{n} …

奇淫巧技-Flutter调用C#

前言众所周知&#xff0c;Xamarin应该是.net下的跨平台开发工具。2016年之前还处于收费状态&#xff0c;后被微软收购后开源。但似乎有个现象&#xff0c;开源后的Xamarin发展似乎有些停滞&#xff0c;而且维护Xamarin的团队又很固执不愿变通。社区多次建议UI层应该统一绘图引擎…

【UOJ#33】【UR #2】树上GCD(长链剖分/根号分类讨论)

【UOJ#33】【UR #2】树上GCD 求解树上两个点到lca的距离的最大公约数是k的对数 首先我们很容易就想到莫比乌斯反演&#xff0c;那么利用倍数形式&#xff0c;我们只需要求解是i的倍数的对数。 考虑枚举lca&#xff0c;这个问题就和深度有关&#xff0c;那么可以长链剖分&…