极大似然模型1

first_step.m
%===============================================================

 clear;
syms rou fai2 k1 k2 k3 n rorn ii
  clc;
  n=input('观测时刻数 n=');
  disp('= = = = = = = = = = = = dealing = = = = = = = = = = = = = = ');
  disp('Just wait for a few minutes............');
k1=sym('(1-rou*rou)*(1-fai2*fai2)*Xmn(rorn,1)*Xmn(rorn,1)');
k2=sym('(1-fai2^2)*(Xmn(rorn,2)-rou*Xmn(rorn,1))^2');
% digits(25);         %设定计算精度

k3=sym('(Xmn(rorn,ii)-rou*(1-fai2)*Xmn(rorn,ii-1)-fai2*Xmn(rorn,ii-2))^2');
k3=symsum(k3,ii,3,n);
sigema=1/n*(k1+k2+k3);         %1.5

sigema_rou=1/n*(diff(k1,rou)+diff(k2,rou)+diff(k3,rou));

sigema_fai2=1/n*(diff(k1,fai2)+diff(k2,fai2)+diff(k3,fai2));

f1=(n/(2*sigema))*sigema_rou-rou/(1-rou*rou);          %1.7
f2=(n/(2*sigema))*sigema_fai2-2*fai2/(1-fai2*fai2);

disp('= = = = = = = = = = = = funcation F = = = = = = = = = = = = = = ');
f1=subs(f1,'rou_fai2(1)','rou');
f2=subs(f2,'rou_fai2(1)','rou');
f1=subs(f1,'rou_fai2(2)','fai2');
f2=subs(f2,'rou_fai2(2)','fai2');

F=[f1;f2];
disp('F=');

disp(F);
disp('= = = = = = = = = = = =    simpling...... = = = = = = = = = = = = = = ');
f1=simple(f1);
f2=simple(f2);
F=[f1;f2];
disp('F=');

disp(F);
%===============================================================
second_step.m
%===============================================================

%极大近似估计函数
%个参数在程序中的替代表示:δ=sigema, ξ=ipsn,φ=fai,ρ=rou
%note:sigema在程序中实际表示的是δ的平方
% saved_max_approx.m的结果填入F中。
function F=second_step(rou_fai2)  %max approximate
global rorn Xmn
%*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*
%copy the value of F in the first_step to fill in F=[] as following:
%for instance,n=10:

% F=[10/(1/5*(1-rou_fai2(1)^2)*(1-rou_fai2(2)^2)*Xmn(rorn,1)^2+1/5*(1-rou_fai2(2)^2)*(Xmn(rorn,2)-rou_fai2(1)*Xmn(rorn,1))^2+1/5*(Xmn(rorn,3)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,2)-rou_fai2(2)*Xmn(rorn,1))^2+1/5*(Xmn(rorn,4)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,3)-rou_fai2(2)*Xmn(rorn,2))^2+1/5*(Xmn(rorn,5)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,4)-rou_fai2(2)*Xmn(rorn,3))^2+1/5*(Xmn(rorn,6)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,5)-rou_fai2(2)*Xmn(rorn,4))^2+1/5*(Xmn(rorn,7)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,6)-rou_fai2(2)*Xmn(rorn,5))^2+1/5*(Xmn(rorn,8)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,7)-rou_fai2(2)*Xmn(rorn,6))^2+1/5*(Xmn(rorn,9)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,8)-rou_fai2(2)*Xmn(rorn,7))^2+1/5*(Xmn(rorn,10)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,9)-rou_fai2(2)*Xmn(rorn,8))^2)*(-1/5*rou_fai2(1)*(1-rou_fai2(2)^2)*Xmn(rorn,1)^2-1/5*(1-rou_fai2(2)^2)*(Xmn(rorn,2)-rou_fai2(1)*Xmn(rorn,1))*Xmn(rorn,1)-1/5*(Xmn(rorn,3)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,2)-rou_fai2(2)*Xmn(rorn,1))*(1-rou_fai2(2))*Xmn(rorn,2)-1/5*(Xmn(rorn,4)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,3)-rou_fai2(2)*Xmn(rorn,2))*(1-rou_fai2(2))*Xmn(rorn,3)-1/5*(Xmn(rorn,5)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,4)-rou_fai2(2)*Xmn(rorn,3))*(1-rou_fai2(2))*Xmn(rorn,4)-1/5*(Xmn(rorn,6)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,5)-rou_fai2(2)*Xmn(rorn,4))*(1-rou_fai2(2))*Xmn(rorn,5)-1/5*(Xmn(rorn,7)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,6)-rou_fai2(2)*Xmn(rorn,5))*(1-rou_fai2(2))*Xmn(rorn,6)-1/5*(Xmn(rorn,8)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,7)-rou_fai2(2)*Xmn(rorn,6))*(1-rou_fai2(2))*Xmn(rorn,7)-1/5*(Xmn(rorn,9)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,8)-rou_fai2(2)*Xmn(rorn,7))*(1-rou_fai2(2))*Xmn(rorn,8)-1/5*(Xmn(rorn,10)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,9)-rou_fai2(2)*Xmn(rorn,8))*(1-rou_fai2(2))*Xmn(rorn,9))-rou_fai2(1)/(1-rou_fai2(1)^2)
%  10/(1/5*(1-rou_fai2(1)^2)*(1-rou_fai2(2)^2)*Xmn(rorn,1)^2+1/5*(1-rou_fai2(2)^2)*(Xmn(rorn,2)-rou_fai2(1)*Xmn(rorn,1))^2+1/5*(Xmn(rorn,3)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,2)-rou_fai2(2)*Xmn(rorn,1))^2+1/5*(Xmn(rorn,4)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,3)-rou_fai2(2)*Xmn(rorn,2))^2+1/5*(Xmn(rorn,5)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,4)-rou_fai2(2)*Xmn(rorn,3))^2+1/5*(Xmn(rorn,6)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,5)-rou_fai2(2)*Xmn(rorn,4))^2+1/5*(Xmn(rorn,7)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,6)-rou_fai2(2)*Xmn(rorn,5))^2+1/5*(Xmn(rorn,8)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,7)-rou_fai2(2)*Xmn(rorn,6))^2+1/5*(Xmn(rorn,9)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,8)-rou_fai2(2)*Xmn(rorn,7))^2+1/5*(Xmn(rorn,10)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,9)-rou_fai2(2)*Xmn(rorn,8))^2)*(-1/5*(1-rou_fai2(1)^2)*rou_fai2(2)*Xmn(rorn,1)^2-1/5*rou_fai2(2)*(Xmn(rorn,2)-rou_fai2(1)*Xmn(rorn,1))^2+1/5*(Xmn(rorn,3)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,2)-rou_fai2(2)*Xmn(rorn,1))*(rou_fai2(1)*Xmn(rorn,2)-Xmn(rorn,1))+1/5*(Xmn(rorn,4)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,3)-rou_fai2(2)*Xmn(rorn,2))*(rou_fai2(1)*Xmn(rorn,3)-Xmn(rorn,2))+1/5*(Xmn(rorn,5)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,4)-rou_fai2(2)*Xmn(rorn,3))*(rou_fai2(1)*Xmn(rorn,4)-Xmn(rorn,3))+1/5*(Xmn(rorn,6)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,5)-rou_fai2(2)*Xmn(rorn,4))*(rou_fai2(1)*Xmn(rorn,5)-Xmn(rorn,4))+1/5*(Xmn(rorn,7)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,6)-rou_fai2(2)*Xmn(rorn,5))*(rou_fai2(1)*Xmn(rorn,6)-Xmn(rorn,5))+1/5*(Xmn(rorn,8)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,7)-rou_fai2(2)*Xmn(rorn,6))*(rou_fai2(1)*Xmn(rorn,7)-Xmn(rorn,6))+1/5*(Xmn(rorn,9)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,8)-rou_fai2(2)*Xmn(rorn,7))*(rou_fai2(1)*Xmn(rorn,8)-Xmn(rorn,7))+1/5*(Xmn(rorn,10)-rou_fai2(1)*(1-rou_fai2(2))*Xmn(rorn,9)-rou_fai2(2)*Xmn(rorn,8))*(rou_fai2(1)*Xmn(rorn,9)-Xmn(rorn,8)))-2*rou_fai2(2)/(1-rou_fai2(2)^2)];

 F=[10/(1/5*(1-(rou_fai2(1))^2)*(1-(rou_fai2(2))^2)*Xmn(rorn,1)^2+1/5*(1-(rou_fai2(2))^2)*(Xmn(rorn,2)-(rou_fai2(1))*Xmn(rorn,1))^2+1/5*(Xmn(rorn,3)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,2)-(rou_fai2(2))*Xmn(rorn,1))^2+1/5*(Xmn(rorn,4)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,3)-(rou_fai2(2))*Xmn(rorn,2))^2+1/5*(Xmn(rorn,5)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,4)-(rou_fai2(2))*Xmn(rorn,3))^2+1/5*(Xmn(rorn,6)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,5)-(rou_fai2(2))*Xmn(rorn,4))^2+1/5*(Xmn(rorn,7)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,6)-(rou_fai2(2))*Xmn(rorn,5))^2+1/5*(Xmn(rorn,8)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,7)-(rou_fai2(2))*Xmn(rorn,6))^2+1/5*(Xmn(rorn,9)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,8)-(rou_fai2(2))*Xmn(rorn,7))^2+1/5*(Xmn(rorn,10)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,9)-(rou_fai2(2))*Xmn(rorn,8))^2)*(-1/5*(rou_fai2(1))*(1-(rou_fai2(2))^2)*Xmn(rorn,1)^2-1/5*(1-(rou_fai2(2))^2)*(Xmn(rorn,2)-(rou_fai2(1))*Xmn(rorn,1))*Xmn(rorn,1)-1/5*(Xmn(rorn,3)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,2)-(rou_fai2(2))*Xmn(rorn,1))*(1-(rou_fai2(2)))*Xmn(rorn,2)-1/5*(Xmn(rorn,4)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,3)-(rou_fai2(2))*Xmn(rorn,2))*(1-(rou_fai2(2)))*Xmn(rorn,3)-1/5*(Xmn(rorn,5)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,4)-(rou_fai2(2))*Xmn(rorn,3))*(1-(rou_fai2(2)))*Xmn(rorn,4)-1/5*(Xmn(rorn,6)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,5)-(rou_fai2(2))*Xmn(rorn,4))*(1-(rou_fai2(2)))*Xmn(rorn,5)-1/5*(Xmn(rorn,7)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,6)-(rou_fai2(2))*Xmn(rorn,5))*(1-(rou_fai2(2)))*Xmn(rorn,6)-1/5*(Xmn(rorn,8)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,7)-(rou_fai2(2))*Xmn(rorn,6))*(1-(rou_fai2(2)))*Xmn(rorn,7)-1/5*(Xmn(rorn,9)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,8)-(rou_fai2(2))*Xmn(rorn,7))*(1-(rou_fai2(2)))*Xmn(rorn,8)-1/5*(Xmn(rorn,10)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,9)-(rou_fai2(2))*Xmn(rorn,8))*(1-(rou_fai2(2)))*Xmn(rorn,9))-(rou_fai2(1))/(1-(rou_fai2(1))^2)
 10/(1/5*(1-(rou_fai2(1))^2)*(1-(rou_fai2(2))^2)*Xmn(rorn,1)^2+1/5*(1-(rou_fai2(2))^2)*(Xmn(rorn,2)-(rou_fai2(1))*Xmn(rorn,1))^2+1/5*(Xmn(rorn,3)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,2)-(rou_fai2(2))*Xmn(rorn,1))^2+1/5*(Xmn(rorn,4)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,3)-(rou_fai2(2))*Xmn(rorn,2))^2+1/5*(Xmn(rorn,5)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,4)-(rou_fai2(2))*Xmn(rorn,3))^2+1/5*(Xmn(rorn,6)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,5)-(rou_fai2(2))*Xmn(rorn,4))^2+1/5*(Xmn(rorn,7)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,6)-(rou_fai2(2))*Xmn(rorn,5))^2+1/5*(Xmn(rorn,8)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,7)-(rou_fai2(2))*Xmn(rorn,6))^2+1/5*(Xmn(rorn,9)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,8)-(rou_fai2(2))*Xmn(rorn,7))^2+1/5*(Xmn(rorn,10)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,9)-(rou_fai2(2))*Xmn(rorn,8))^2)*(-1/5*(1-(rou_fai2(1))^2)*(rou_fai2(2))*Xmn(rorn,1)^2-1/5*(rou_fai2(2))*(Xmn(rorn,2)-(rou_fai2(1))*Xmn(rorn,1))^2+1/5*(Xmn(rorn,3)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,2)-(rou_fai2(2))*Xmn(rorn,1))*((rou_fai2(1))*Xmn(rorn,2)-Xmn(rorn,1))+1/5*(Xmn(rorn,4)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,3)-(rou_fai2(2))*Xmn(rorn,2))*((rou_fai2(1))*Xmn(rorn,3)-Xmn(rorn,2))+1/5*(Xmn(rorn,5)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,4)-(rou_fai2(2))*Xmn(rorn,3))*((rou_fai2(1))*Xmn(rorn,4)-Xmn(rorn,3))+1/5*(Xmn(rorn,6)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,5)-(rou_fai2(2))*Xmn(rorn,4))*((rou_fai2(1))*Xmn(rorn,5)-Xmn(rorn,4))+1/5*(Xmn(rorn,7)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,6)-(rou_fai2(2))*Xmn(rorn,5))*((rou_fai2(1))*Xmn(rorn,6)-Xmn(rorn,5))+1/5*(Xmn(rorn,8)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,7)-(rou_fai2(2))*Xmn(rorn,6))*((rou_fai2(1))*Xmn(rorn,7)-Xmn(rorn,6))+1/5*(Xmn(rorn,9)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,8)-(rou_fai2(2))*Xmn(rorn,7))*((rou_fai2(1))*Xmn(rorn,8)-Xmn(rorn,7))+1/5*(Xmn(rorn,10)-(rou_fai2(1))*(1-(rou_fai2(2)))*Xmn(rorn,9)-(rou_fai2(2))*Xmn(rorn,8))*((rou_fai2(1))*Xmn(rorn,9)-Xmn(rorn,8)))-2*(rou_fai2(2))/(1-(rou_fai2(2))^2)];

%It's a function,so needn't execute


%===============================================================
third_step.m
%===============================================================

%矩阵运算之解方程组
%输入参数:n为整型数,φ1、φ2,ε1~εn为双精度浮点数,须带小数点的
%输出数据:X1~Xn
%================================================================
clc;
disp('! 注意:是否将first_step中产生的F的两列表达式复制到程序second_step中且保存!请选择y/n:');
userchoice = input('@=@=@=@=@=@=@=@=@=@=@=@=选择:','s');
if userchoice ~='y';
    error('请重新运行程序first_step,并将结果填入程序second_step中F=[]处!');
end
clc;
disp('              输入预设数据:');%disp(['',n,'']);

% n=input('输入参数n='); %n is filled in the first_step
m=input('输入参数m=');
p=input('输入参数φ1=');
q=input('输入参数φ2=');
si=input('输入参数si=');%si代表normrnd函数的参数sigema
%用normrnd(0,sigma,行,列)产生正态随机数
%矩阵下标从1开始
%================================================================
E=normrnd(0,si,m,n);      %按序产生随机数ε1~εn,m*n矩阵
disp('E(m,n)=');disp(E);
X=zeros(m,n);
Xn=zeros(2,n);
for k=1:m
 for i0=1:n
    if i0==1;
        Xn(2,1)=E(k,1);
        X1=Xn(2,1);
    end
    if i0==2;
        Xn(2,2)=p*Xn(2,1)+E(k,2);
        X2=Xn(2,2);
    end
    if i0>2;
        Xn(2,i0)=p*Xn(2,i0-1)+q*Xn(2,i0-2)+E(k,i0);
    end   
    if i0==n;
        for i1=1:n;
            X(k,i1)=Xn(2,i1);
        end
    end
%     i0=i0+1;?
 end
end
disp('X=');
disp(X);
disp('X dealing finished!');
%================================================================

%warning('message');%不退出程序
%error('message');  %退出程序
%break;             %跳出for或while循环
%================================================================
%下面用fsolve函数来解方程组1.8

rou=zeros(1,m);
fai2=zeros(1,m);

global rorn   Xmn
Xmn=X;
options=optimset('Display','iter');   % Option to display output
rou_fai2_0 = [0.5; 0.5];                %起始数据,可作为调整参数
for rorn0=1:m;
    rorn=rorn0;
    disp('*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*');
    disp('当前程序执行到的X矩阵的行数为:');disp(rorn);
[rou_fai2,fval] = fsolve(@second_step,rou_fai2_0,options) ;

    disp('rou=');disp(rou_fai2(1));rou(rorn)=rou_fai2(1);
    disp('fai2=');disp(rou_fai2(2));fai2(rorn)=rou_fai2(2);
    disp('fval=');disp(fval);
end
%满足极大似然估计的(rou,fai2)的判定,以及后续处理:
sigema_2=zeros(1,m);
fai_1=zeros(1,m);
for rorm=1:m;
    disp('=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=');
    disp('数据在执行到行数为');disp(rorm);disp(' 时,有处理结果为:')     
    if abs(rou(rorm))<1;
        if abs(fai2(rorm))<1;
           sigema2=sigema;                          %1.9

           sigema2=subs(sigema2,'rou(rorm)','rou');
           sigema2=subs(sigema2,'fai2(rorm)','fai2');
           sigema2=simple(sigema2);
           sigema2=eval(sigema2);
          
           fai1=rou(rorm)*(1-fai2(rorm));           %1.10
           sigema_2(rorm)=sigema2;
           fai_1(rorm)=fai1;
           disp('有满足条件的结果!!   结果为:')
           disp('σ^2=');disp(sigema2);
           disp('φ1=');disp(fai1);
        else
            disp('|φ2|>=1,不满足集合条件!');
        end
    else
        disp('|ρ|>=1,不满足集合条件!');
    end
end

disp('=*=*=*=*=*=*=*=*=*=*=*The result!*=*=*=*=*=*=*=*=*=*=');
disp('rou=');disp(rou);
disp('φ2=');disp(fai2);
disp('σ^2的极大似然估计为');
disp(sigema_2);
disp('φ1的极大似然估计为');
disp(fai_1);

%将结果输出到excel:
xlswrite('X', X);
xlswrite('rou.xls', rou);
xlswrite('fai2.xls', fai2);
xlswrite('sigema_2.xls', sigema_2);
xlswrite('fai1', fai_1);

% var  %求方差
% std  %求标准差

% % 绘制近似数图像
% title('φ1、φ2的散点图');grid;
% subplot(2,1,1);
% len_fai=length(fai_1);
% n0=1:len_fai;
% scatter(n0,fai_1);
% hold on;
% n1=fix(len_fai/2);
% stem(n1,p);
%
% subplot(2,1,2);
% scatter(n0,fai2);
% hold on;
% stem(n1,q);


%===============================================================

转载于:https://www.cnblogs.com/longx726/archive/2008/06/06/1215172.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/476595.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 1177. 构建回文串检测(前缀和)

1. 题目 给你一个字符串 s&#xff0c;请你对 s 的子串进行检测。 每次检测&#xff0c;待检子串都可以表示为 queries[i] [left, right, k]。我们可以 重新排列 子串 s[left], ..., s[right]&#xff0c;并从中选择 最多 k 项替换成任何小写英文字母。 如果在上述检测过程…

张俊林:ChatGPT会成为下一代搜索引擎吗

文|张俊林知乎本文将从以下几个方面展开&#xff1a;引言ChatGPT的技术原理ChatGPT能否取代Google、百度等传统搜索引擎引言作为智能对话系统&#xff0c;ChatGPT最近两天爆火&#xff0c;都火出技术圈了&#xff0c;网上到处都在转ChatGPT相关的内容和测试例子&#xff0c;效果…

k8s dashboard_k8s集群部署Dashboard

部署Dashboard&#xff08;Web UI&#xff09;* dashboard-deployment.yaml // 部署Pod&#xff0c;提供Web服务 * dashboard-rbac.yaml // 授权访问apiserver获取信息 * dashboard-service.yaml // 发布服务&#xff0c;提供对外访问 ​…

.Net笔试题 有答案

在对SQL Server 数据库操作时应选用&#xff08;a&#xff09;。 a)SQL Server .NET Framework 数据提供程序&#xff1b; b)OLE DB .NET Framework 数据提供程序&#xff1b; c)ODBC .NET Framework 数据提供程序&#xff1b; d)Oracle .NET Framework数据提供程序&#x…

程序员面试金典 - 面试题 17.13. 恢复空格(DP+Trie树)

文章目录1. 题目2. 解题2.1 动态规划2.2 Trie树1. 题目 哦&#xff0c;不&#xff01;你不小心把一个长篇文章中的空格、标点都删掉了&#xff0c;并且大写也弄成了小写。 像句子"I reset the computer. It still didn’t boot!"已经变成了"iresetthecomputeri…

2022的结尾,对话系统起飞了

文 | 郑楚杰知乎编者记&#xff1a;近日来&#xff0c;ChatGPT的连续刷屏让人们重新看到了AI的希望&#xff0c;编者通过对ChatGPT的试用&#xff0c;发现其对话能力早已不同于两年前的对话系统了&#xff0c;可以说&#xff0c;有了质的飞跃&#xff0c;向着用户体验奇点迈进了…

python清除列表内容_Python 列表的清空方式

情况列表的操作&#xff1a; del list[:] list[] list[:][] def func(L): L.append(1) print L #L[:][] #del L[:] L [] print L L[] func(L) print L 输出结果&#xff1a; [1] [] [1] 分析&#xff1a;L是可变数据类型&#xff0c;L作为参数&#xff0c;函数内对L的改变&…

ASP.NET小收集:Word的编码是Unicode

Word的编码是Unicode&#xff0c;从Word连接的超链接会附带Unicode编码进行打开&#xff0c;所以&#xff0c;如果没有对链接页面设定编码&#xff0c;将出现乱码&#xff0c;解决方法之一&#xff1a;设置编码为UTF-8<meta http-equiv"Content-Type" content&quo…

程序员面试金典 - 面试题 05.08. 绘制直线(位运算)

1. 题目 绘制直线。有个单色屏幕存储在一个一维数组中&#xff0c;使得32个连续像素可以存放在一个 int 里。 屏幕宽度为w&#xff0c;且w可被32整除&#xff08;即一个 int 不会分布在两行上&#xff09;&#xff0c;屏幕高度可由数组长度及屏幕宽度推算得出。 请实现一个函数…

FarPoint Spread For .Net 4.0

FarPoint Spread For .Net 4.0 ftp://ftp.fpoint.com/Trials/SpreadWinForm/spwin.zip http://www.fpoint.com:8080/files/Trials/SpreadWinForm/spwinframework35.zip 转载于:https://www.cnblogs.com/Tonyyang/archive/2008/06/23/1228133.html

入职比你晚,薪资比你高,礼貌吗

文&#xff5c; 穆胜咨询研究院源&#xff5c; 穆胜咨询秋招已过&#xff0c;企业迎来了许多新的面孔&#xff0c;对于很多老员工来说却是五味杂陈。新人空降拿到高工资&#xff0c;而自己的资历却换不来期待幅度的涨薪。“新老员工薪资倒挂”的问题&#xff0c;本就是HR的一道…

乐学python_【IT专家】铁乐学python

铁乐学 python 2018/04/18 13 铁乐学 python_day23_ 面向对象进阶 1_ 反射 以下内容大部分摘自博客 cnblogs/Eva-J/ isinstance() 和 issubclass() 两者的返回值都是布尔值 isinstance() 能够检测到继承关系 type() 只能单纯的判 断类 isinstance() 判断一个对象和一个类有没有…

程序员面试金典 - 面试题 16.14. 最佳直线(哈希map+set)

1. 题目 给定一个二维平面及平面上的 N 个点列表Points&#xff0c;其中第i个点的坐标为Points[i][Xi,Yi]。 请找出一条直线&#xff0c;其通过的点的数目最多。 设穿过最多点的直线所穿过的全部点编号从小到大排序的列表为S&#xff0c;你仅需返回[S[0],S[1]]作为答案 若有多…

Visual C# 2008+SQL Server 2005 数据库与网络开发--13.1.1 菜单创建

创建菜单的方法大体可以包括两种&#xff0c;比较简单的方法是通过Visual Studio 2008提供的菜单设计工具来创建&#xff0c;这种方式创建的菜单比较固定。另外一种方式是通过后台程序创建&#xff0c;这种方式由于通过代码在窗体菜单加载的时候完成&#xff0c;所以编写过程相…

c语言数据类型_C语言基础数据类型

点击上方“C语言中文社区”&#xff0c;选择“设为星标★”技术干货第一时间送达&#xff01;基本类型基本类型就是我们在使用C语言时最基础的数据类型&#xff0c;包括整形(短整型&#xff0c;基本整型&#xff0c;长整型)、字符型、浮点型(单、双精度)以及枚举类型。构造类型…

为辨别offer含金量,我做了个时薪计算器

文 | 曹宾玲源 | 表外表里提到计算机专业&#xff0c;大部分人第一时间会联想到“万金油专业”“大厂”和“高薪”。但在2023届计算机毕业生眼里&#xff0c;这已经是过去式了。以前被嫌弃的华子&#xff0c;今年校招群里挤满了人&#xff0c;即使一直泡在“人才池”里&#xf…

程序员面试金典 - 面试题 16.22. 兰顿蚂蚁(deque模拟)

1. 题目 一只蚂蚁坐在由白色和黑色方格构成的无限网格上。 开始时&#xff0c;网格全白&#xff0c;蚂蚁面向右侧。 每行走一步&#xff0c;蚂蚁执行以下操作。 (1) 如果在白色方格上&#xff0c;则翻转方格的颜色&#xff0c;向右(顺时针)转 90 度&#xff0c;并向前移动一个…

在程序中设置infopath中的整型等域值时出错解决方法

最近一直和infopath表单打交道&#xff0c;碰到的问题也比较多&#xff0c;刚刚就碰到一个在程序中修改infopath表单中域的内容时出错的问题&#xff0c;写出来与大家共享一下&#xff0c;我想这个问题&#xff0c;可能玩infopath的话&#xff0c;迟早会碰上的吧。具体表现就是…

python中如何输入矩阵_python - 如何向矩阵中添加向量_numpy_酷徒编程知识库

首先&#xff0c;我们可以初始化一个用零填充所需形状的矩阵&#xff0c;然后将a复制到前13行。在任何情况下&#xff0c;我们都必须形成一个新的矩阵&#xff0c;因为我们无法摆弄现有的矩阵/向量&#xff0c;因为我们需要为额外的空行分配更多的内存。 你可以在下面找到例子演…

聚类方法(Clustering)

文章目录1. 聚类基本概念1.1 相似度、距离1.2 类、簇1.3 类之间的距离2. 层次聚类3. K均值聚类3.1 模型3.2 策略3.3 算法3.4 算法特性4. sklearn.cluster4.1 sklearn.cluster.KMeans k均值聚类4.2 Hierarchical clustering 层次聚类聚类&#xff1a;依据样本特征的相似度或距离…