P3292 [SCOI2016]幸运数字(树剖 + 线段树维护线性基)

P3292 [SCOI2016]幸运数字

思路

如果这题是求x,yx, yx,y之间的距离显然我们可以通过树剖加线段树来写, 但是这里变成了求任意个数的异或最大值。如果给定区间我们显然可以通过线性基来求解,但是这里是动态的区间,每次区间需要我们去找,于是我们想到可以通过线段树加树剖来维护一段区间内的线性基,然后再合并不同区间的线性基,最后对合并好了的线性基进行求解最大值。线性基区间的寻找就有点像是前面说的求这两点间的点权和了。

然后整体复杂度分析一下log(n)log(n)log(n)的树剖,nlog(n)nlog(n)nlog(n)的线段树,再还有log(n)∗log(n)log(n) * log(n)log(n)log(n)的线性基合并,乘起来就是nlog4(n)n log ^ 4(n)nlog4(n),由于nnn比较小,勉强能冲一冲。

代码

/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-')    f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}const int N = 2e4 + 10;int head[N], to[N << 1], nex[N << 1], cnt = 1;int son[N], fa[N], sz[N], dep[N], top[N], id[N], rk[N], tot, n, m;ll value[N], tree[N << 2][64], ans[64];void add(int x, int y) {to[cnt] = y;nex[cnt] = head[x];head[x] = cnt++;
}void dfs1(int rt, int f) {dep[rt] = dep[f] + 1;sz[rt] = 1, fa[rt] = f;for(int i = head[rt]; i; i = nex[i]) {if(to[i] == f) continue;dfs1(to[i], rt);if(!son[rt] || sz[son[rt]] < sz[to[i]]) son[rt] = to[i];sz[rt] += sz[to[i]];}
}void dfs2(int rt, int tp) {top[rt] = tp; tot++;rk[tot] = rt, id[rt] = tot;if(!son[rt]) return ;dfs2(son[rt], tp);for(int i = head[rt]; i; i = nex[i]) {if(to[i] == fa[rt] || to[i] == son[rt]) continue;dfs2(to[i], to[i]);}
}void insert(ll * base, ll x) {for(int i = 60; i >= 0; i--) {if(x >> i & 1) {if(!base[i]) {base[i] = x;return ;}x ^= base[i];}}
}void merge(ll * a, ll * b) {for(int i = 60; i >= 0; i--) {if(b[i]) {insert(a, b[i]);}}
}void push_up(int rt) {merge(tree[rt], tree[ls]);merge(tree[rt], tree[rs]);
}void build(int rt, int l, int r) {if(l == r) {insert(tree[rt], value[rk[l]]);return ;}build(lson);build(rson);push_up(rt);
}void query(int rt, int l, int r, int L, int R) {if(l >= L && r <= R) {merge(ans, tree[rt]);return ;}if(L <= mid) query(lson, L, R);if(R > mid)  query(rson, L, R);
}ll query_max() {ll res = 0;for(int i = 60; i >= 0; i--) {if((res ^ ans[i]) > res) {res ^= ans[i];}ans[i] = 0;//用完了就重置0方便下一次查找答案的线性基合并。}return res;
}ll solve(int x, int y) {while(top[x] != top[y]) {if(dep[top[x]] < dep[top[y]]) swap(x, y);query(1, 1, n, id[top[x]], id[x]);x = fa[top[x]];}if(dep[x] > dep[y]) swap(x, y);query(1, 1, n, id[x], id[y]);return query_max();
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);n = read(), m = read();for(int i = 1; i <= n; i++) {value[i] = read();}for(int i = 1; i < n; i++) {int x = read(), y = read();add(x, y);add(y, x);}dfs1(1, 0);dfs2(1, 1);build(1, 1, n);for(int i = 1; i <= m; i++) {int x = read(), y = read();printf("%lld\n", solve(x, y));}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314341.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CF773E Blog Post Rating(推导min的通项/线段树)

CF773E Blog Post Rating 现在有一个值F&#xff0c;每次如果序列加入一个数后重新排列&#xff0c;每次如果F小于期望值&#xff0c;就会1&#xff0c;如果等于就不变&#xff0c;如果大于就-1&#xff0c;求解每一次加入后F的最大值。 这道题的确是非常的巧妙&#xff0c;尤…

用Keras.NET 做一个图像识别的训练

.NET Core 的应用场景越来越广&#xff0c;开源社区也不断壮大&#xff0c; .NET Core在机器学习领域不断发展ML.NET外&#xff0c;也通过结合Tensorflow.NET去完善ML.NET在深度学习领域的功能&#xff0c;在ML.NET 1.3开始迈出了非常重要的一步。这不仅是微软拥抱开源的策略&a…

2019牛客多校第四场 B xor (线性基求交)

xor 思路 题目是要求[l,r][l, r][l,r]的所有集合是否都可以得到xxx&#xff0c;那么显然我们可以对这[l,r][l, r][l,r]个线性基求交&#xff0c;然后再特判能否xxx能否插入&#xff0c;如果能插入&#xff0c;显然输出NONONO&#xff0c;否则就输出YESYESYES&#xff0c;所以…

「数据ETL」从数据民工到数据白领蜕变之旅(六)-将Python的能力嫁接到SSIS中...

前一篇推文中&#xff0c;给大家演示了在SSIS上使用dotNET脚本&#xff0c;实现一些原生SSIS难以实现的功能&#xff0c;并冠以无限可能的说法。充分复用python的现有优势python的确是一门非常优秀的编程语言&#xff0c;特别是在数据领域&#xff0c;网络爬虫、数据处理、分析…

.NET Core玩转爬虫系列之借助正则表达式入门篇

接下来一段时间&#xff0c;我会花些时间研究C#玩转爬虫的方法及其实践。话不多说&#xff0c;开始吧~一般来说:设计并实现一个爬虫的步骤是:模拟登录 -> 模拟发送request请求 -> 取回response数据 -> 提取所需信息并将其进行重新组织 -> 存入DB或文件中 -> 后期…

单位根反演

单位根反演 https://www.cnblogs.com/cjyyb/p/10838495.html

ASP.NET Core on K8S深入学习(5)Rolling Update

本篇已加入《.NET Core on K8S学习实践系列文章索引》&#xff0c;可以点击查看更多容器化技术相关系列文章。01—What is Rolling Update?为了服务升级过程中提供可持续的不中断的服务&#xff0c;K8S提供了Rolling Update机制&#xff0c;它可以使得服务近乎无缝地平滑升级&…

LOJ6053简单的函数(min_25筛)

LOJ6053简单的函数 https://loj.ac/p/6053 min_25筛模板题&#xff0c;但是要注意质数点有2比较特殊&#xff0c;需要在y0的时候特判质数包含2的情况。 #include<bits/stdc.h> #define LL long long using namespace std; inline LL read() {char x\0;LL fh1,sum0;for(…

HDU 5608 function (杜教筛)

function 推式子 n2−3n2∑d∣nf(d)calulateS(n)∑i1nf(i)mod1097n ^ 2 - 3n 2 \sum_{d \mid n} f(d)\\ calulate\ S(n) \sum_{i 1} ^{n} f(i) \bmod 10 ^9 7\\ n2−3n2d∣n∑​f(d)calulate S(n)i1∑n​f(i)mod1097 考虑对式子进行化简 ∑i1n(i2−3i2)∑i1n∑d∣if(d)∑…

依赖注入在 dotnet core 中实现与使用:1 基本概念

关于 Microsoft Extension: DependencyInjection 的介绍已经很多&#xff0c;但是多数偏重于实现原理和一些特定的实现场景。作为 dotnet core 的核心基石&#xff0c;这里准备全面介绍它的概念、原理和使用。这里首先介绍概念部分。1. 概念该项目在 GitHub 的地址&#xff1a;…

【UOJ#188】Sanrd(min_25筛)

【UOJ#188】Sanrd&#xff08;min_25筛&#xff09; 求解区间[l,r]中所有数次大质因子的和&#xff0c;对于p^k的贡献当k大于1时定义为p&#xff0c;等于1时定义为0. 利用min_25筛第二部分&#xff0c;每一次筛掉的就是最小质因子的幂次&#xff0c;所以当前所在S(x,y)的质数…

HDU 5528 Count a * b

Count a * b 推式子 f(n)∑i0n−1∑j0n−1n∤ijn2−∑i1n∑j1nn∣ijn2−∑i1n∑j1nngcd(i,n)∣igcd(i,n)jn2−∑i1nnngcd(i,n)n2−∑i1ngcd(i,n)n2−∑d∣nd∑i1n(gcd(i,n)d)n2−∑d∣nd∑i1nd(gcd(i,nd)1)n2−∑d∣ndϕ(nd)f(n) \sum_{i 0} ^{n - 1} \sum_{j 0} ^ {n - 1} …

【LOJ#572】Misaka Network 与求和(莫比乌斯反演/杜教筛/min_25筛)

【LOJ#572】Misaka Network 与求和 https://www.cnblogs.com/cjyyb/p/10170630.html 看到次大质因子就可以想到是min_25筛了&#xff0c;然后只需要做莫比乌斯反演&#xff0c;然后预处理整除分块点的前缀和&#xff0c;然后再结合杜教筛即可。

软件设计的第一性原理:结构化抽象

软件设计的第一性原理&#xff0c;是结构化抽象。术生于道&#xff0c;技术生于原理。引语所谓的第一性原理&#xff0c;就是无论使用什么方法论&#xff0c;都无法绕过的那最最基础的部分。无论是 DDD 设计&#xff0c;还是面向模式的架构设计&#xff0c;或 微服务架构&#…

HDU 6706 huntian oy (欧拉函数 + 杜教筛)

huntian oy 推式子 ∑i1n∑j1igcd(ia−ja,ib−jb)(gcd(i,j)1)∑i1n∑j1i(i−j)(gcd(i,j)1)∑i1ni∑j1i(gcd(i,j)1)−∑i1n∑j1ij(gcd(i,j)1)∑i1niϕ(i)−∑i1niϕ(i)(i1)2∑i1niϕ(i)−(i1)2然后套路地变成求S(n)∑i1niϕ(i)g(n)nϕ(n)这里直接套用杜教筛化简得到g(1)S(n)∑i…

【LOJ#6682】梦中的数论(min_25筛)

【LOJ#6682】梦中的数论 https://www.cnblogs.com/cjyyb/p/11178395.html 利用min_25筛&#xff0c;求解约数个数函数平方的前缀和。

基于.NetCore结合docker-compose实践Gitlab-CI/CD 排坑指南

引言看过docker-compose真香的园友可能留意到当时是【把部署dll文件拷贝到生产机器】&#xff0c;即时打包成镜像并启动容器&#xff0c;并没有完成CI/CD。经过长时间实操验证&#xff0c;终于完成基于Gitlab的CI/CD实践&#xff0c;本次实践的坑位很多&#xff0c; 实操过程尽…

51 NOD 1227 平均最小公倍数(杜教筛)

1227 平均最小公倍数 推式子 S(n)∑i1n∑j1ilcm(i,j)i∑i1n∑j1iijigcd(i,j)∑i1n∑j1ijgcd(i,j)∑i1n∑d1i∑j1ijd(gcd(i,j)d)∑i1n∑d1i∑j1idj(gcd(j,id)1)∑i1n∑d1iidϕ(id)(id1)2∑d1n∑i1ndiϕ(i)(i1)2接下来就是杜教筛求∑i1niϕ(i)了&#xff0c;g(1)S(n)∑i1n(f∗g)…

【BZOJ3512】DZY Loves Math IV(杜教筛)

【BZOJ3512】DZY Loves Math IV&#xff08;杜教筛&#xff09; https://www.cnblogs.com/cjyyb/p/10165338.html

.NET Core很酷,你不得不知

我一直回想我的第一篇博文&#xff0c;那是关于多个服务的服务器平台的详细教程&#xff0c;它使用 GitLab CI 在 AWS 上&#xff0c;当时使用单个命令行进行部署&#xff0c; 至今回想&#xff0c;令人感觉很酷。前几天&#xff0c;我偶然听说一些软件公司的 HR 在招聘原则上拒…