1220 约数之和
推式子
∑i=1n∑j=1nd(i,j)=∑i=1n∑j=1n∑x∣i∑y∣j(gcd(x,y)=1)xjy=∑d=1ndμ(d)∑i=1nd∑x∣iix∑j=1nd∑y∣jj=∑d=1ndμ(d)(∑i=1nd∑x∣ix)2=∑d=1ndμ(d)(∑x=1nx∑x∣i)2=∑d=1ndμ(d)(∑x=1nxnx)2接下来就是杜教筛求dμ(d)的前缀和,然后再直接分块求∑x=1nxnx,就可以搞定了。\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} d(i,j)\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \sum_{x \mid i} \sum_{y \mid j} (gcd(x, y) = 1) \frac{xj}{y}\\ = \sum_{d = 1} ^{n} d \mu(d) \sum_{i = 1} ^{\frac{n}{d}} \sum_{x \mid i} \frac{i}{x} \sum_{j = 1} ^{\frac{n}{d}} \sum_{y \mid j} j\\ = \sum_{d = 1} ^{n} d \mu(d) \left(\sum_{i = 1} ^{\frac{n}{d}} \sum_{x \mid i} x \right) ^ 2\\ = \sum_{d = 1} ^{n} d \mu(d) \left(\sum_{x = 1} ^{n} x \sum_{x \mid i} \right) ^ 2\\ = \sum_{d = 1} ^{n} d \mu(d) \left(\sum_{x = 1} ^{n} x \frac{n}{x} \right) ^ 2\\ 接下来就是杜教筛求d \mu(d)的前缀和,然后再直接分块求\sum_{x = 1} ^{n} x \frac{n}{x},就可以搞定了。 i=1∑nj=1∑nd(i,j)=i=1∑nj=1∑nx∣i∑y∣j∑(gcd(x,y)=1)yxj=d=1∑ndμ(d)i=1∑dnx∣i∑xij=1∑dny∣j∑j=d=1∑ndμ(d)⎝⎛i=1∑dnx∣i∑x⎠⎞2=d=1∑ndμ(d)⎝⎛x=1∑nxx∣i∑⎠⎞2=d=1∑ndμ(d)(x=1∑nxxn)2接下来就是杜教筛求dμ(d)的前缀和,然后再直接分块求x=1∑nxxn,就可以搞定了。
代码
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}const int N = 1e6 + 10, mod = 1e9 + 7;int prime[N], cnt;bool st[N];ll mu[N];void init() {mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;mu[i] = -1;}for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;mu[i * prime[j]] = -mu[i];}}for(int i = 1; i < N; i++) {mu[i] = (1ll * i * mu[i] + mu[i - 1]) % mod;}
}ll calc2(ll l, ll r) {return (l + r) * (r - l + 1) / 2 % mod;
}ll calc1(ll n) {ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans + calc2(l, r) * (n / l) % mod) % mod;}return ans;
}unordered_map<ll, ll> ans_s;ll S(ll n) {if(n < N) return mu[n];if(ans_s.count(n)) return ans_s[n];ll ans = 1;for(ll l = 2, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans - calc2(l, r) * S(n / l) % mod + mod) % mod;}return ans_s[n] = (ans + mod) % mod;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);ll n = read(), ans = 0;init();for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ll res1 = calc1(n / l), res2 = (S(r) - S(l - 1) + mod) % mod;ans = (ans + res1 * res1 % mod * res2 % mod) % mod;}printf("%lld\n", ans);return 0;
}