EOJ Monthly 2019.11
∑i=1n∑a1=1i∑a2=1i∑a3=1i⋯∑ak−1i∑aki[gcd(a1,a2,a3,…,ak−1,ak,i)==1]=∑i=1n∑d∣iμ(d)⌊id⌋k=∑d=1nμ(d)∑d∣i⌊id⌋k=∑d=1nμ(d)∑t=1ndtk\sum_{i = 1} ^{n} \sum_{a_1 = 1} ^{i} \sum_{a_2 = 1} ^{i} \sum_{a_3 = 1} ^{i} \dots \sum_{a_{k - 1}} ^{i} \sum_{a_k} ^{i} [gcd(a_1, a_2, a_3, \dots, a_{k - 1}, a_{k}, i) == 1]\\ = \sum_{i = 1} ^{n} \sum_{d \mid i} \mu(d) \lfloor \frac{i}{d} \rfloor ^ k\\ = \sum_{d = 1} ^{n} \mu(d) \sum_{d \mid i} \lfloor \frac{i}{d}\rfloor ^ k\\ = \sum_{d = 1} ^{n} \mu(d) \sum_{t = 1} ^{\frac{n}{d}} t ^ k\\ i=1∑na1=1∑ia2=1∑ia3=1∑i⋯ak−1∑iak∑i[gcd(a1,a2,a3,…,ak−1,ak,i)==1]=i=1∑nd∣i∑μ(d)⌊di⌋k=d=1∑nμ(d)d∣i∑⌊di⌋k=d=1∑nμ(d)t=1∑dntk
然后杜教筛筛出∑i=1nμ(i)\sum\limits_{i = 1} ^{n} \mu(i)i=1∑nμ(i)的前缀和,用拉格朗日插值得到∑i=1nik\sum\limits_{i = 1} ^{n} i ^ ki=1∑nik这个式子,再加上数论分块即可完美解决。
代码
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>using namespace std;typedef long long ll;const int inf = 0x3f3f3f3f;
const double eps = 1e-7;const int N = 1e6 + 10, mod = 998244353;ll fac[N], pre[N], suc[N], inv[N], prime[N], sum[N], mu[N], n, k, cnt;bool st[N];ll quick_pow(ll a, int n) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;a = a * a % mod;n >>= 1;}return ans;
}void init() {sum[1] = mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;mu[i] = -1;sum[i] = quick_pow(i, k);}for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;sum[i * prime[j]] = 1ll * sum[i] * sum[prime[j]] % mod;if(i % prime[j] == 0) break;mu[i * prime[j]] = -mu[i];}}fac[0] = inv[0] = 1;for(int i = 1; i < N; i++) {mu[i] = (mu[i] + mu[i - 1]) % mod;sum[i] = (sum[i] + sum[i - 1]) % mod;fac[i] = 1ll * fac[i - 1] * i % mod;}inv[N - 1] = quick_pow(fac[N - 1], mod - 2);for(int i = N - 2; i >= 1; i--) {inv[i] = 1ll * inv[i + 1] * (i + 1) % mod;}
}ll solve(ll n) {ll ans = 0;pre[0] = suc[k + 3] = 1;for(int i = 1; i <= k + 2; i++) pre[i] = 1ll * pre[i - 1] * (n - i) % mod;for(int i = k + 2; i >= 1; i--) suc[i] = 1ll * suc[i + 1] * (n - i) % mod;for(int i = 1; i <= k + 2; i++) {ll a = 1ll * pre[i - 1] * suc[i + 1] % mod, b = 1ll * inv[i - 1] * inv[k + 2 - i] % mod;if((k + 2 - i) & 1) b *= -1;ans = ((ans + 1ll * sum[i] * a % mod * b % mod) % mod + mod) % mod;}return ans;
}unordered_map<ll, ll> ans_s;ll S(ll n) {if(n < N) return mu[n];if(ans_s.count(n)) return ans_s[n];ll ans = 1;for(ll l = 2, r; l <= n; l = r + 1) {r = n / (n / l);ans = ((ans - 1ll *(r - l + 1) * S(n / l)) % mod + mod) % mod;}return ans_s[n] = ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);scanf("%lld %lld", &n, &k);init();ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans + 1ll * ((S(r) - S(l - 1)) % mod + mod) % mod * solve(n / l) % mod) % mod;}printf("%lld\n", ans);return 0;
}