Function
推式子
S(n)=∑i=1n∑d∣id[gcd(d,id)==1]=∑d=1nd∑d∣i[gcd(d,id)==1]=∑d=1nd∑i=1nd[gcd(d,i)==1]=∑d=1nd∑i=1nd∑k∣gcd(d,i)μ(k)=∑k=1nμ(k)k∑d=1nkd∑i=1nk2dt=k2d=∑t=1nnt∑k2∣tμ(k)ktk2=∑k=1nμ(k)k∑k2∣tnttk2i=tk2=∑k=1nμ(k)k∑i=1nk2nik2iS(n) = \sum_{i = 1} ^{n} \sum_{d \mid i} d [gcd(d, \frac{i}{d}) == 1]\\ = \sum_{d = 1} ^{n} d \sum_{d \mid i} [gcd(d, \frac{i}{d}) == 1]\\ = \sum_{d = 1} ^{n}d \sum_{i = 1} ^{\frac{n}{d}}[gcd(d, i)== 1]\\ = \sum_{d = 1} ^{n}d \sum_{i = 1} ^{\frac{n}{d}} \sum_{k \mid gcd(d, i)} \mu(k)\\ = \sum_{k = 1} ^{n} \mu(k) k \sum_{d = 1} ^{\frac{n}{k}} d \sum_{i = 1} ^{\frac{n}{k ^2d}}\\ t = k ^ 2 d\\ = \sum_{t = 1} ^{n} \frac{n}{t} \sum_{k ^ 2 \mid t} \mu(k)k \frac{t}{k ^ 2}\\ = \sum_{k = 1} ^{\sqrt n} \mu(k)k \sum_{k ^ 2 \mid t} \frac{n}{t} \frac{t}{k ^ 2}\\ i = \frac{t}{k ^ 2}\\ = \sum_{k = 1} ^{\sqrt n} \mu(k) k \sum_{i = 1} ^{\frac{n}{k ^ 2}} \frac{n}{i k ^ 2} i\\ S(n)=i=1∑nd∣i∑d[gcd(d,di)==1]=d=1∑ndd∣i∑[gcd(d,di)==1]=d=1∑ndi=1∑dn[gcd(d,i)==1]=d=1∑ndi=1∑dnk∣gcd(d,i)∑μ(k)=k=1∑nμ(k)kd=1∑kndi=1∑k2dnt=k2d=t=1∑ntnk2∣t∑μ(k)kk2t=k=1∑nμ(k)kk2∣t∑tnk2ti=k2t=k=1∑nμ(k)ki=1∑k2nik2ni
代码
注意随手取模,long long ×\times×long long会溢出!!!
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>using namespace std;typedef long long ll;const int inf = 0x3f3f3f3f;
const double eps = 1e-7;const int N = 1e6 + 10, mod = 1e9 + 7, inv2 = mod + 1 >> 1;int prime[N], cnt;ll mu[N];bool st[N];void init() {mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;mu[i] = -1;}for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;mu[i * prime[j]] = -mu[i];}}for(int i = 1; i < N; i++) {mu[i] = (mu[i - 1] + 1ll * i * mu[i] % mod + mod) % mod;}
}
ll calc1(ll l, ll r) {return 1ll * (l + r) % mod * ((r - l + 1) % mod) % mod * inv2 % mod;
}ll calc2(ll n) {ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans + 1ll * (n / l) % mod * calc1(l, r) % mod) % mod;}return ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();int T;scanf("%d", &T);while(T--) {ll n, ans = 0;scanf("%lld", &n);int m = sqrt(n);for(ll l = 1, r; l <= m; l = r + 1) {r = min((int)sqrt(n / (n / (l * l))), m);ans = (ans + 1ll * ((mu[r] - mu[l - 1]) % mod + mod) % mod * calc2(n / (l * l)) % mod) % mod;}printf("%lld\n", ans);}return 0;
}