F. Cowmpany Cowmpensation
首先一般dp推导dp[i][j]=∏u∈soni∑k=1jdp[v][k]dp[i][j] = \prod\limits_{u \in son_i} \sum\limits_{k = 1} ^{j} dp[v][k]dp[i][j]=u∈soni∏k=1∑jdp[v][k]
这个是毫无疑问的,然后我们考虑如何得到d≥nd \geq nd≥n的情况。
我们给定一个出了1号节点全是叶节点的情况,显然在根节点的统计也就是一个关于叶节点个数的多项式,当我们对根节点的情况统计求和的时候这个维度可能会升高,所以得到,在这种情况下最多就是n次多项式,
其他情况类比上面的情况,得到这是一个最多为n次的多项式,所以我们筛出前n + 1项来就能套上拉个朗日插值了,
dfsdfsdfs进行dpdpdp的复杂度是O(n2)O(n ^ 2)O(n2)的加上O(n)O(n)O(n)拉格朗日插值,整体还是O(n2)O(n ^ 2)O(n2)得。
代码
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>using namespace std;typedef long long ll;const int inf = 0x3f3f3f3f;
const double eps = 1e-7;const int N = 3e3 + 10, mod = 1e9 + 7;int head[N], to[N], nex[N], cnt = 1, n, d;ll dp[N][N], pre[N], suc[N], fac[N], inv[N];ll quick_pow(ll a, int n) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;a = a * a % mod;n >>= 1;}return ans;
}void add(int x, int y) {to[cnt] = y;nex[cnt] = head[x];head[x] = cnt++;
}void dfs(int rt, int fa) {for(int i = 1; i <= n + 1; i++) dp[rt][i] = 1;for(int i = head[rt]; i; i = nex[i]) {if(to[i] == fa) continue;dfs(to[i], rt);for(int j = 1; j <= n + 1; j++) {dp[rt][j] = (1ll * dp[rt][j] * dp[to[i]][j]) % mod;}}for(int i = 1; i <= n + 1; i++) dp[rt][i] = (dp[rt][i] + dp[rt][i - 1]) % mod;
}ll solve(int x) {if(x <= n + 1) return dp[1][x];n++;pre[0] = suc[n + 1] = fac[0] = inv[0] = 1;for(int i = 1; i <= n; i++) {pre[i] = 1ll * pre[i - 1] * (x - i) % mod;fac[i] = 1ll * fac[i - 1] * i % mod;}fac[n + 1] = 1ll * fac[n] * (n + 1) % mod;inv[n + 1] = quick_pow(fac[n + 1], mod - 2);for(int i = n; i >= 1; i--) {suc[i] = 1ll * suc[i + 1] * (x - i) % mod;inv[i] = 1ll * inv[i + 1] * (i + 1) % mod;}ll ans = 0;for(int i = 1; i <= n; i++) {ll a = 1ll * pre[i - 1] * suc[i + 1] % mod * dp[1][i] % mod;ll b = 1ll * inv[i - 1] * inv[n - i] % mod;if((n - i) & 1) b *= -1;ans = ((ans + a * b % mod) % mod + mod) % mod;}return ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);scanf("%d %d", &n, &d);for(int i = 2; i <= n; i++) {int x; scanf("%d", &x);add(x, i);}dfs(1, 0);printf("%lld\n", solve(d));return 0;
}