Group Theory (I)

news/2025/10/1 6:18:28/文章来源:https://www.cnblogs.com/Arcticus/p/19110434

1 Groups

1.1 Definition and Basic Terms

Given a set with a binary operation $ (G,\cdot) $, if it satisfies:

  • Closure: for all $ a,b\in G $, $ a\cdot b\in G $;
  • Associativity: for all $ a,b,c\in G $, $ (a\cdot b)\cdot c=a\cdot(b\cdot c) $;
  • Identity: there exists $ e\in G $ such that for all $ a\in G $, $ e\cdot a=a\cdot e=a $;
  • Inverse: for every $ a\in G $ there exists $ a^{-1}\in G $ with $ a\cdot a{-1}=a\cdot a=e $,

then $ (G,\cdot) $ is a group.
The order of a group is the number of its elements.

  • With only closure + associativity, the structure is a semigroup.
  • We often call $ G $ the underlying set, and $ (G,+) $ or $ (G,\cdot) $ the group.

1.2 Abelian Groups

If in addition commutativity holds, i.e., $ a\cdot b=b\cdot a $ for all $ a,b\in G $, then $ (G,\cdot) $ is abelian.

1.3 Cyclic Groups

A cyclic group is generated by one element; all cyclic groups are abelian.

Notation example: $ f^k $ means $ \underbrace{f\cdots f}_{k} $.
Caution. In a cyclic group, elements commute because they are powers of the same generator (hence reduce to addition of exponents), not merely because of associativity.

1.4 Subgroups and Normal Subgroups

A subgroup is a subset of $ G $ that itself forms a group under the same operation.

A normal subgroup $ N\trianglelefteq G $ is defined by

\[gNg^{-1}=N,\quad \forall\, g\in G. \]

Define the left coset of $ N $ by $ gN $ and the right coset by $ Ng $.
Normality can be understood as “left cosets = right cosets (for all $ g $)”, which ensures the quotient’s operation is well-defined.

  • In abelian groups, every subgroup is normal.
  • Normal subgroups are well-defined substructures of a group.

1.5 Quotient Groups

The elements of a quotient group are the cosets of a normal subgroup $ N $.
Example for the additive group $ \mathbb Z $:

\[\mathbb Z/n\mathbb Z=\{\,0+n\mathbb Z,\,1+n\mathbb Z,\,\dots,\,(n-1)+n\mathbb Z\,\}. \]

It is also common to write, using representatives,

\[\mathbb Z/n\mathbb Z=\{\,0,1,\dots,n-1\,\}. \]

1.6 Simple Groups

A simple group is a nontrivial group with no normal subgroups other than the identity subgroup and itself. They play a role analogous to primes in arithmetic.

1.7 Symmetric and Alternating Groups

Example:

\[S_3=\{\,e,(12),(13),(23),(123),(132)\,\}, \]

where $ (123) $ means $ 1\mapsto2,\ 2\mapsto3,\ 3\mapsto1 $.
The symmetric group has order $ n! $, and the alternating group has order $ \dfrac{n!}{2} $.

The alternating group consists of even permutations (while the symmetric group contains both odd and even permutations).

Example:

\[A_4=\{\,e,\ (123),(132),(124),(142),(134),(143),(234),(243),\ (12)(34),(13)(24),(14)(23)\,\}. \]

Note that $ (12)(34) $ means apply $ (34) $ first and then $ (12) $.
Alternating groups are different from cyclic groups.

1.8 Matrix Groups

  • General Linear Group

    \[GL_n(\mathbb R)=\{\,A\in M_{n\times n}(\mathbb R):\det(A)\neq 0\,\}. \]

    If $ \det(A)=0 $, the linear map is not invertible.

  • Special Linear Group

    \[SL_n(\mathbb R)=\{\,A\in GL_n(\mathbb R):\det(A)=1\,\}, \]

    which preserves volume.

  • Orthogonal Group

    \[O(n)=\{\,A\in GL_n(\mathbb R):A^\top A=I\,\}. \]

    Orthogonality means columns/rows are orthonormal; geometrically these are rotations and reflections.
    A matrix is often viewed as a collection of column vectors.

1.9 Lie Groups

A Lie group is a group that is also a smooth manifold.


2 \(\sigma\)-Algebra

Let $ X $ be a set. A $ \sigma $-algebra $ \mathcal F\subseteq \mathcal P(X) $ satisfies:

  1. Contains the whole space:

    \[X\in\mathcal F. \]

  2. Closed under complementation: if $ A\in\mathcal F $, then

    \[X\setminus A\in\mathcal F. \]

  3. Closed under countable unions: if $ A_1,A_2,\dots\in\mathcal F $, then

    \[\bigcup_{i=1}^\infty A_i\in\mathcal F. \]

Notes:

  • A (set) algebra only requires closure under finite unions (countable may be infinite), hence is weaker than a $ \sigma $-algebra.
  • We also use \(\sigma\)-field as a synonym for $ \sigma $-algebra.

Example/Counterexample. Consider

\[\left(0,1-\frac1n\right],\quad n=1,2,\dots \]

If $ \mathcal F $ contains all sets of the form $ (\cdot,\cdot] $ of this type only, then

\[\bigcup_{n=1}^\infty\left(0,1-\frac1n\right]=(0,1), \]

and $ (0,1) $ is not in that class, so this is not a $ \sigma $-algebra.


3 Rings and Fields

3.1 Rings

A ring is a set $ R $ with two operations (addition and multiplication) such that:

  • $ (R,+) $ is an abelian group;
  • multiplication on $ R $ is associative;
  • distributive laws hold.

If multiplication is commutative, $ R $ is a commutative ring.
If there is a multiplicative identity, it is often called unity.

3.2 Fields and Examples

If $ (R,\cdot) $ with unity is commutative and $ R\setminus{0} $ forms an abelian group under multiplication (i.e., every nonzero element has a multiplicative inverse), then $ R $ is a field.

Example:

\[\mathbb Z_6\ \text{is not a field, since }2\cdot ?\not\equiv 1\pmod 6. \]

However, $ \mathbb Z_p $ is a field when $ p $ is prime.

(Heuristically, one often categorizes algebraic structures into “group-like” and “ring/field-like”.)

3.3 Polynomial Rings

For a ring $ R $, define the polynomial ring $ R[x] $:

\[f(x)=a_0+a_1x+\cdots+a_nx^n,\qquad a_i\in R. \]

Example:

\[\mathbb Z[x]\ \text{is the ring of polynomials with integer coefficients.} \]

3.4 Ideals

Ideals play the role in rings analogous to normal subgroups in groups: they are the right substructures for forming quotient rings.

  • Quotient rings are made of cosets of an ideal.
  • Ideals are well-defined substructures of a ring.

Notation reminder: $ N\trianglelefteq G $ for normal subgroups, while $ I\subseteq R $ for ideals.

3.5 Quotient Rings

For polynomials, write

\[f(x)\equiv g(x)\pmod{h(x)} \]

to mean $ h(x)\mid (f(x)-g(x)) $.

In $ \mathbb Z_2[x] $, let

\[f(x)=x^2+x+1. \]

Then

\[x^2\equiv -x-1\pmod{f(x)}. \]

Since in $ \mathbb Z_2 $ we have $ -x=x $ and $ -1=1 $,

\[x^2\equiv x+1\pmod{f(x)}. \]

Hence every polynomial can be reduced to a linear representative $ a+bx $. Therefore

\[\mathbb Z_2[x]/(f(x))=\{\,0,\,1,\,x,\,x+1\,\}. \]

In general, the size formula is

\[\#\bigl(\mathbb Z_p[x]/(f(x))\bigr)=p^{\deg f}. \]

3.6 Galois Fields

We denote finite fields by $ GF(p) $ (for prime $ p $), and more generally $ GF(p^n) $.

  • $ GF(p^n) $ has $ p^n $ elements.
  • For $ GF(2^n) $ specifically:
    • Addition equals bitwise XOR;
    • Addition equals subtraction (since $ 1=-1 $).

4 Crypto

This section especially points to RSA, where groups/rings/fields and modular arithmetic are central.


5 Pólya’s Enumeration Theorem

Especially useful for coloring and other combinatorial counting problems under group actions.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/923549.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

财务分析怎么做 - 智慧园区

我前段时间跟做财务的朋友聊了聊,发现他们都遇上了这种情况:公司业务看起来一直在增长,但年底一算账,实际利润却少得可怜;还有报表上利润虽然可观,但现金流总是紧张,钱都不知道去哪了? 这背后,往往是三个最让…

dz论坛做分类网站南庄顺德网站建设

问题:使用 Canvas.DrawPath 绘制时,最后一点无法画到终点位置。(这个问题要在粗线才能察觉) 适用:Delphi 10 Seattle (或更早的版本) for Android & iOS 修复方法: 请将源码 FMX…

技术内容思路构建Promot

技术内容思路构建PromotPosted on 2025-10-01 06:07 吾以观复 阅读(0) 评论(0) 收藏 举报关联知识库:技术内容思路构建Promot技术内容思路构建Promot历史第一:结合历史发展,用时间线的方式突出迭代演进变化,帮…

Group Theory

1 Groups 1.1 Definition and Basic Terms Given a set with a binary operation $ (G,\cdot) $, if it satisfies:Closure: for all $ a,b\in G $, $ a\cdot b\in G $; Associativity: for all $ a,b,c\in G $, $ (a\…

一站式网站建设平台制作网站的要素

1.触发器概述 触发器是一种特殊的存储过程,它与特定的表或列作特定类型的数据修改操作(如INSERT、UPDATE、DELETE等)相关联,并在这些操作发生时自动执行。触发器的主要作用是确保对数据的处理必须符合由触发器所定义的规则&#…

定制网站和模板建站网站建设中遇到的问题

文章目录 AI 甘安捏【入门介绍,形象生动】3D 重建技術 (一): 什麼是 3D 重建 (3D Reconstruction)?為什麼需要 3D 重建?【NeRF,3D Gaussian Splatting简介】3D 重建技術 (二): NeRF,AI技術革命 -- 用神經網路把場景「背…

摩尔定律的历史与AI统计学:从命名误导到本质洞察

摩尔定律的历史与AI统计学:从命名误导到本质洞察Posted on 2025-10-01 06:06 吾以观复 阅读(0) 评论(0) 收藏 举报关联知识库:摩尔定律的历史与AI统计学:从命名误导到本质洞察摩尔定律的历史与AI统计学:从命名…

立场客观性警告Prompt

立场客观性警告PromptPosted on 2025-10-01 06:06 吾以观复 阅读(0) 评论(0) 收藏 举报关联知识库:立场客观性警告Prompt立场客观性警告Prompt 核心目标 多角度验证 > 单一立场 - 在信息爆炸的时代,我们需要…

# SICP学习笔记:计算机程序的构造与解释

# SICP学习笔记:计算机程序的构造与解释Posted on 2025-10-01 06:06 吾以观复 阅读(0) 评论(0) 收藏 举报关联知识库:# SICP学习笔记:计算机程序的构造与解释SICP学习笔记:计算机程序的构造与解释 Wikipedi…

3.劝学

3.劝学Posted on 2025-10-01 06:06 吾以观复 阅读(0) 评论(0) 收藏 举报关联知识库:3.劝学 劝学 劝学 荀子〔先秦〕 君子曰:学不可以已。 青,取之于蓝,而青于蓝;冰,水为之,而寒于水。木直中绳,輮以为轮,…

服装网站建设平台12306网站多少钱做的

动机(Motivaton) 在软件构建过程中,集合对象内部结构常常变化各异。但对于这些集合对象,我们呢希望在不暴露其内部结构的同时,可以让外部客户代码透明地访问其中包含的元素;同时这种“透明遍历”也为“同一…

电商网站开发设计文档百事通微信推广平台

access数据库破解工具很多,密码能不用费多大功夫就能破解出来,但是对于包含特殊字符包括中文字符的密码,就算破解出来后想通过数据库工具查看,复制粘贴到密码输入框实际都起不了作用 已迁移到:分享最前沿的安全信息-a…

网站开发 入门教程网站建设人员配置

云原生学习路线导航页(持续更新中) 本文是 Kubernetes operator学习 系列的前置知识篇,帮助大家对 Operator 进行初步了解Kubernetes operator学习系列 快捷链接 Kubernetes operator 前置知识篇Kubernetes operator(一&#xff0…

网站上怎么做返回主页链接哪个云服务器便宜又好

下标:数组中的识别名称 也就是字符串或整数在数组中的代号数组中有几个索引值就被称为几维数组。索引值:索引是对数据库表中一列或多列的值进行排序的一种结构。数组分类在PHP数组被分为两种:索引数组:索引(indexed)索引值是整数&…

中时讯通信建设有限公司网站营销网站的建造步骤

文章目录 注意两点:一、设置原始模式二、设置收到数据的最小字节数返回代码 注意两点: 一、设置原始模式 newtio.c_lflag & ~(ICANON | ECHO | ECHOE | ISIG); /*Input*/二、设置收到数据的最小字节数返回 tio.c_cc[VMIN] 1; /* 读数据时的最…

龙岩市建设部网站八里河风景区网站建设内容摘要

第1篇:Arduino与ESP32开发板的安装方法 第2篇:ESP32 helloword第一个程序示范点亮板载LED 第3篇:vscode搭建esp32 arduino开发环境 第4篇:vscodeplatformio搭建esp32 arduino开发环境 ​​​​​​第5篇:doit_esp32_devkit_v1使用pmw呼吸灯实验 第6篇:ESP32连接无源喇叭播…

吉林华商建设集团网站wordpress添加小工具

序言 我们有时候需要一个类似这样的显示,上面是文字,下面是一条线 这样的显示效果是TextView实现不了的,需要我们自己进行修改一下。 实现 创建一个UnderlineTextView,继承系统的TextView class UnderlineTextView(mContext…

mysql 视频网站开发网站建设app开发合同

python笔记5-python2写csv文件中文乱码问题前言python2最大的坑在于中文编码问题,遇到中文报错首先加u,再各种encode、decode。当list、tuple、dict里面有中文时,打印出来的是Unicode编码,这个是无解的。对中文编码纠结的建议尽快…

网站建设的基本要求深圳智慧建设控股有限公司网站

2.组合总合III 题目描述 找出所有相加之和为 n 的 k 个数的组合,且满足下列条件: 只使用数字1到9每个数字 最多使用一次 返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。 示例 1: 输入: k 3,…

官方网站建设制作平台led 网站模板

最近pypi官网进行了更新,老的上传网址作废了。记录下上传到pypi的方法 0、去pypi官网注册账号,没账号是不可能上传的,想想也是那不乱套了吗,注册后会收到一个邮件需要点击然后重新登录 1、目录就是这样 ,我要上传muli…