南昌网站建设模板技术公司注册免费
南昌网站建设模板技术公司,注册免费,php网站建设填空题,无锡网站建设书生商友openai用tf实现的真的看不懂#xff0c;大佬的世界…
PPO的详细细节
1. 奖励模型和策略的价值头将 query 和 response 的连接作为输入 奖励模型和策略的价值头 不 仅仅查看响应。相反#xff0c;它将 query 和 response 连接在一起#xff0c;作为 query_response def ge…openai用tf实现的真的看不懂大佬的世界…
PPO的详细细节
1. 奖励模型和策略的价值头将 query 和 response 的连接作为输入 奖励模型和策略的价值头 不 仅仅查看响应。相反它将 query 和 response 连接在一起作为 query_response def get_rewards_op(self, queries, responses):tokens tf.concat([queries, responses], axis1)return self._build(tokens)举例来说如果 query “他在想某事但他的眼神很难读懂”。 和 response “他看着他的左手手臂伸在他的前面。” 那么奖励模型和策略的价值会对query_response “他在想某事但他的眼神很难读懂。他看着他的左手手臂伸在他的前面。” 进行前向传递并产生形状为 (B, T, 1) 的奖励和价值其中 B 是 BS (批量大小)T 是序列长度而 1 代表奖励头的输出结构的维度为 1 def respond_op(self, queries, length):contexts self.embed_queries(queries)context_length tf.shape(contexts)[1]result sample.sample_sequence(stepself.step_core,contextcontexts,lengthlength,model_hparamsself.model_hparams,temperatureself.temperature,extra_outputs{values:tf.float32},)return dict(responsesresult[tokens][:, context_length:],logprobsresult[logprobs],valuesresult[values],)T 意味着每个 token 都有与其和前文关联的奖励。例如眼神 token 将有一个与他在想某事但他的眼神很难读懂 相对应的奖励。
2.使用特殊的填充 token 来填充和截断输入
Openai 为查询 query_length 设置了固定的输入长度; 它使用 pad_token 填充 过短的序列并 截断 过长的序列
def _generator():inner_gen self.generator(mode, seedseed, shuffleshuffle, commcomm)for text in inner_gen:tokens encoder.encode(text)if start_token is not None:try:first_index tokens.index(start_token)1if first_index len(tokens):tokens tokens[first_index:]except:continuetokens tokens[:sequence_length] # token截断if end_token is not None:try:last_index len(tokens)-tokens[::-1].index(end_token)tokens tokens[:last_index]except:continueif len(tokens) sequence_length:tokens tokens [padding_token] * (sequence_length - len(tokens)) # padding token填充assert len(tokens) sequence_lengthyield dict(tokenstokens)在填充输入时OAI 使用了词汇表之外的 token self.padding_token len(encoder) 2 # 2 unnecessary, for historical reasons 在 GPT 和 GPT-2 的预训练期间没有使用填充 token; 因此transformer 的 gpt2 模型与其分词器没有关联的官方填充 token。通常的做法是设置 tokenizer.pad_token tokenizer.eos_token 但在这项工作中我们将区分这两个特殊 token 以匹配 OAI 的原始设置所以我们将使用tokenizer.add_special_tokens({pad_token: [PAD]})
# 实战案例
import transformers
tokenizer transformers.AutoTokenizer.from_pretrained(gpt2, padding_sideright)
tokenizer.add_special_tokens({pad_token: [PAD]})
query_length 5
texts [usually, he would,she thought about it,
]
tokens []
for text in texts:tokens.append(tokenizer.encode(text)[:query_length])print(tokens, tokens)
inputs tokenizer.pad({input_ids: tokens},paddingmax_length,max_lengthquery_length,return_tensorspt,return_attention_maskTrue,
)
print(inputs, inputs)prints are
tokens [[23073, 11, 339, 561], [7091, 1807, 546, 340]]
inputs {input_ids: tensor([[23073, 11, 339, 561, 50257],[ 7091, 1807, 546, 340, 50257]]), attention_mask: tensor([[1, 1, 1, 1, 0],[1, 1, 1, 1, 0]])}3.生成固定长度响应的响应生成不需要填充
在响应生成期间OAI 使用 top_k0, top_p1.0 并仅在词汇表上做分类样本 代码会一直采样直到生成固定长度的响应。值得注意的是即使遇到 EOS (序列结束) token 它也会继续采样。
def body(past, prev, output, logprobs, *extras):next_outputs step(model_hparams, prev[:, tf.newaxis], pastpast,past_tokensoutput[:, :-1])logits tf.cast(next_outputs[logits], tf.float32) * betaif top_k ! 0:logits tf.cond(tf.equal(top_k, 0),lambda: logits,lambda: utils.take_top_k_logits(logits, top_k))if top_p ! 1.0:logits utils.take_top_p_logits(logits, top_p)# 采样next_sample utils.sample_from_logits(logits, dtypetf.int32) next_logprob utils.logprobs_from_logits(logitslogits, labelsnext_sample)return [tf.concat([past, next_outputs[presents]], axis-2),tf.squeeze(next_sample, axis[1]),tf.concat([output, next_sample], axis1),tf.concat([logprobs, next_logprob], axis1),*[tf.concat([prev, next_outputs[k]], axis1) for k, prev in zip(extra_outputs, extras)],]
实战案例
import torch
import transformers
tokenizer transformers.AutoTokenizer.from_pretrained(gpt2, padding_sideright)
tokenizer.add_special_tokens({pad_token: [PAD]}) # 添加特殊词元
pad_id tokenizer.pad_token_id
query torch.tensor([[pad_id, pad_id, 23073],
])
response torch.tensor([[11, 339, 561],
])
response_length 4
temperature 0.7
pretrained_model transformers.AutoModelForCausalLM.from_pretrained(gpt2)
pretrained_model.generation_config.eos_token_id None # disable pad_token_id and eos_token_id because we just want to
pretrained_model.generation_config.pad_token_id None # generate tokens without truncation / padding
generation_config transformers.GenerationConfig(max_new_tokensresponse_length,min_new_tokensresponse_length,temperaturetemperature,top_k0.0,top_p1.0,do_sampleTrue,
)
context_length query.shape[1]
attention_mask query ! tokenizer.pad_token_id
input_ids query.clone()
input_ids[~attention_mask] 0 # set padding tokens to 0
output pretrained_model.generate(input_idsinput_ids,attention_maskattention_mask,# position_idsattention_mask.cumsum(1) - attention_mask.long(), # generation collapsed if this was turned on. TODO: why does generation collapse with this?generation_configgeneration_config,return_dict_in_generateTrue,
)
print(output.sequences)
tensor([[ 0, 0, 23073, 16851, 11, 475, 991]])5.奖励模型和策略训练的学习率退火 奖励模型只训练一个 epcho以避免过度拟合有限量的人类注释数据 (例如descriptiveness 任务只有大约 5000 个标签)。在这个单一的 epcho 中学习率会退火至零 类似于奖励模型训练策略训练的学习率也会退火至零
def train(self):labels download_labels(self.hparams.labels.source,label_typeself.label_type,question_schemasself.question_schemas,total_labelsself.hparams.labels.num_train,commself.comm)self.add_to_buffer(labels)if self.hparams.normalize_before:target_mean, target_std self.target_mean_std()self.normalize(self.sample_policy_responses, target_mean, target_std)# Collect training data for reward model training. train_indices will include the indices# trained on across all ranks, and its size must be a multiple of minibatch_size.per_rank_batch_size utils.exact_div(self.hparams.batch_size, self.num_ranks)# Make sure each rank gets the same shuffle so we train on each point exactly oncetrain_indices self.comm.bcast(np.random.permutation(self.hparams.labels.num_train))# Train on train_indicesprint(self.rank, training on, self.hparams.labels.num_train, in batches of, per_rank_batch_size)for start_index in range(0, self.hparams.labels.num_train, self.hparams.batch_size):end_index start_index self.hparams.batch_sizeall_ranks_indices train_indices[start_index:end_index]our_indices all_ranks_indices[self.rank::self.num_ranks]lr (1 - start_index / self.hparams.labels.num_train) * self.hparams.lr # 学习率退火self.train_batch(our_indices, lr)if self.hparams.normalize_after:target_mean, target_std np.zeros([]), np.ones([])self.normalize(self.sample_policy_responses, target_mean, target_std)Reward模型训练细节
1.奖励模型只输出最后一个 token 的值
在对 query 和 response 的连接进行前向传递后获得的奖励将具有形状 (B, T, 1) 其中 B 是 BS(批量大小)T 是序列长度 (始终相同; 在 OAI 的设置中它是 query_length response_length 64 24 88 用于风格任务参见 launch.py#L9-L11)1 是奖励头其维度为 1 原始代码库提取最后一个 token 的奖励 因此奖励将只具有形状 (B, 1) def _build(self, X):results self.model(XX, padding_tokenself.padding_token)reward results[reward][:, -1] # 取最后一个tokenwith tf.variable_scope(f{self.scope}/reward_norm):self.reward_gain tf.get_variable(gain, shape(), initializertf.constant_initializer(1))self.reward_bias tf.get_variable(bias, shape(), initializertf.constant_initializer(0))reward self.reward_gain * reward self.reward_biasself._set_initializers()return reward2.奖励头层初始化 i n i t i a l N ( 0 , 1 / ( d model 1 ) ) initial \mathcal{N}\left(0,1 /\left(\sqrt{d_{\text {model }}1}\right)\right) initialN(0,1/(dmodel 1 ))
def fc_layer(x, outshape, *, in_axes1, scaleNone):inshape tuple([int(d) for d in x.shape[-in_axes:]]) if in_axes0 else ()outshape tuple(outshape)if scale is None:scale 1 / np.sqrt(np.prod(inshape) 1)w tf.get_variable(w, inshape outshape, initializertf.random_normal_initializer(stddevscale)) # 权重初始化b tf.get_variable(b, outshape, initializertf.constant_initializer(0)) # 偏置初始化为0# Call the regularizer manually so that it works correctly with GradientTaperegularizer tf.contrib.layers.l2_regularizer(scale1/np.prod(outshape)) #so that initial value of regularizer is 1reg_loss regularizer(w)return tensordot(x, w, in_axes) b, reg_lossdropped_h dropout(h, self.hparams.head_pdrop, do_dropoutdo_dropout, seedhead_seed, namedrop)
# TODO: refactor this, perhaps move to Policy
res, reg_loss fc_layer(dropped_h, (), scale0 if head_name value else None)3.奖励模型的前后归一化
在论文中Ziegler 等人 (2019) 提到“为了保持训练过程中奖励模型的规模一致我们将其归一化使其在 ( x ∼ D , y ∼ ρ ( ⋅ ∣ x ) ) ( x \sim \mathcal{D}, y \sim \rho(·|x) ) (x∼D,y∼ρ(⋅∣x)) 的情况下均值为 0 0 0方差为 1 1 1”。为了执行归一化过程代码首先创建了 reward_gain 和 reward_bias 以便可以通过 reward reward * reward_gain reward_bias 来计算奖励值
def _build(self, tokens, do_dropoutFalse, nameNone):with tf.variable_scope(self.scope, reuseself.built, auxiliary_name_scopenot self.built, use_resourceself.use_resource):lm_output self.model(Xtokens, do_dropoutdo_dropout, padding_tokenself.padding_token)reward lm_output[reward][:, -1] # 奖励取最后一个tokenwith tf.variable_scope(reward_norm):if not self.built:self.reward_gain tf.get_variable(gain, shape(), initializertf.constant_initializer(1)) # 奖励权重wself.reward_bias tf.get_variable(bias, shape(), initializertf.constant_initializer(0)) # 奖励偏置bself._reward_gain_p tf.placeholder(namegain_p, dtypetf.float32, shape())self._reward_bias_p tf.placeholder(namebias_p, dtypetf.float32, shape())self._set_reward_norm tf.group(self.reward_gain.assign(self._reward_gain_p),self.reward_bias.assign(self._reward_bias_p))if reward is not None:reward self.reward_gain * reward self.reward_bias # reward计算if not self.built:self._set_initializers()self.built Truereturn reward在执行归一化过程时代码首先设置 reward_gain1, reward_bias0 然后从目标数据集 中收集采样查询、完成的响应和评估的奖励。接着它得到评估奖励的 实证均值和标准差并尝试计算 reward_gain 和 reward_bias 应该是什么。 def normalize(self, sample_fn, target_means, target_stds):if not self.hparams.normalize_samples:returnself.reset_reward_scales() # reward_gain1, reward_bias0 query_responses sample_fn(self.hparams.normalize_samples) # 采样means, stds self.stats(query_responses) # 评估奖励的 实证均值和标准差self.set_reward_norms(means, stds, target_means, target_stds) # 归一化if self.hparams.debug_normalize:query_responses sample_fn(self.hparams.debug_normalize)stats self.stats(query_responses)self.log_stats_after_normalize(stats)我们用( μ D \mu_{\mathcal{D}} μD) 来表示实证均值用( σ D \sigma_{\mathcal{D}} σD ) 表示实证标准差用 ( g ) (g) (g)表示 reward_gain 用( b b b) 表示 reward_bias 用( μ T 0 \mu_{\mathcal{T}} 0 μT0) 表示 目标均值用( σ T 1 \sigma_{\mathcal{T}}1 σT1) 表示 目标标准差。然后我们有以下公式。 g N ( μ D , σ D ) b N ( g μ D , g σ D ) b N ( g μ D b , g σ D ) N ( μ T , σ T ) ⋅ g σ T σ D ⋅ b μ T − g μ D \begin{aligned}g\mathcal{N}(\mu_{\mathcal{D}}, \sigma_{\mathcal{D}}) b \mathcal{N}(g\mu_{\mathcal{D}}, g\sigma_{\mathcal{D}}) b \mathcal{N}(g\mu_{\mathcal{D}} b, g\sigma_{\mathcal{D}}) \mathcal{N}(\mu_{\mathcal{T}}, \sigma_{\mathcal{T}}) ·g \frac{\sigma_{\mathcal{T}}}{\sigma_{\mathcal{D}}} ·b \mu_{\mathcal{T}} - g\mu_{\mathcal{D}}\end{aligned} gN(μD,σD)bN(gμD,gσD)bN(gμDb,gσD)N(μT,σT)⋅gσDσT⋅bμT−gμD
然后在奖励模型训练的 前 和 后 应用归一化过程
def train(self):labels download_labels(self.hparams.labels.source,label_typeself.label_type,question_schemasself.question_schemas,total_labelsself.hparams.labels.num_train,commself.comm)self.add_to_buffer(labels)if self.hparams.normalize_before: # 训练前进行mean和std归一化target_mean, target_std self.target_mean_std()self.normalize(self.sample_policy_responses, target_mean, target_std)# Collect training data for reward model training. train_indices will include the indices# trained on across all ranks, and its size must be a multiple of minibatch_size.per_rank_batch_size utils.exact_div(self.hparams.batch_size, self.num_ranks)# Make sure each rank gets the same shuffle so we train on each point exactly oncetrain_indices self.comm.bcast(np.random.permutation(self.hparams.labels.num_train))# Train on train_indicesprint(self.rank, training on, self.hparams.labels.num_train, in batches of, per_rank_batch_size)for start_index in range(0, self.hparams.labels.num_train, self.hparams.batch_size):end_index start_index self.hparams.batch_sizeall_ranks_indices train_indices[start_index:end_index]our_indices all_ranks_indices[self.rank::self.num_ranks]lr (1 - start_index / self.hparams.labels.num_train) * self.hparams.lrself.train_batch(our_indices, lr)if self.hparams.normalize_after: #训练后进行mean和std归一化target_mean, target_std np.zeros([]), np.ones([])self.normalize(self.sample_policy_responses, target_mean, target_std)归一化目的生成的响应 ( y ∼ ρ ( ⋅ ∣ x ) y \sim \rho(·|x) y∼ρ(⋅∣x)) 来自预训练的语言模型 ( ρ \rho ρ )。模型 ( ρ \rho ρ) 被固定为参考并且在奖励学习中不会更新
reward_trainer RewardModelTrainer(reward_modelreward_model,policyref_policy, # reward模型来更新pquery_samplerquery_sampler,hparamshparams,commcomm,)策略训练细节
1. 通过采样温度来缩放 logits
在计算响应的对数概率时模型首先输出响应中 token 的 logits然后用采样温度除以这些 logits ,即 logits / self.temperature在一个非正式的测试中我们发现如果不进行此缩放KL 散度会比预期更快地上升性能会下降。
2. 价值头层的初始化
价值头的权重是根据 ( N ( 0 , 0 ) \mathcal{N}(0,0) N(0,0)) 进行初始化的价值头的p偏置为0
3. 选择以句号开始和结束的查询文本
数据预处理的细节:
尝试仅在 start_text“.” 之后选择文本尝试在 end_text“.” 之前选择文本然后填充文本 def _generator():inner_gen self.generator(mode, seedseed, shuffleshuffle, commcomm)for text in inner_gen:tokens encoder.encode(text)if start_token is not None: # start_text. try:first_index tokens.index(start_token)1if first_index len(tokens):tokens tokens[first_index:]except:continuetokens tokens[:sequence_length]if end_token is not None: # end_text.try:last_index len(tokens)-tokens[::-1].index(end_token)tokens tokens[:last_index]except:continueif len(tokens) sequence_length: # 填充文本tokens tokens [padding_token] * (sequence_length - len(tokens))assert len(tokens) sequence_lengthyield dict(tokenstokens)禁用 dropout
策略训练中不使用 dropout
def step_core(self, model_hparams, tokens, pastNone, past_tokensNone, do_dropoutFalse, nameNone):with tf.name_scope(name, step):with tf.variable_scope(self.scope,reuseself.built,auxiliary_name_scopenot self.built,use_resourceself.use_resource):lm_output self.model(Xtokens, pastpast, past_tokenspast_tokens,do_dropoutdo_dropout, padding_tokenself.padding_token)# need to slice logits since we dont want to generate special tokenslogits lm_output[lm_logits][:,:,:self.model_hparams.n_vocab]presents lm_output[present]value lm_output[value]if not self.built:self._set_initializers()self.built Truereturn {logits: logits,values: value,presents: presents,}拒绝采样
Ziegler 等人 (2019) 建议: “我们使用拒绝采样来确保在第 16 和 24 个 token 之间有一个句号然后在那个句号处截断 (这是‘句子结束’的粗略近似。我们选择它是因为它很容易集成到 RL 循环中即使是粗略的近似也足以使人类评估任务变得稍微容易一些)。在 RL 微调期间我们对没有这样的句号的延续给予固定奖励 -1。
如何实现 token 截断我们想要在第一个出现在响应的 truncate_after 位置之后的 truncate_token 处截断将截断 token 后的所有 token 替换为填充 token 在截断响应上运行奖励模型: 在 token 截断过程将响应截断后代码然后在 截断的响应 上运行奖励模型。 拒绝采样: 如果在第 16 和 24 个 token 之间没有句号那么将响应的分数替换为固定的低值
def make_score_fn(hparams, score_model):padding_token score_model.padding_tokenpostprocess_fn lm_tasks.postprocess_fn_from_hparams(hparams, padding_token)#decorate requires a named function, postprocess_fn can be anonymousutils.graph_function(responsesSchema(tf.int32, (None, None)))def postprocess(responses):return postprocess_fn(responses)filter_fn lm_tasks.filter_fn_from_hparams(hparams)utils.graph_function(responsesSchema(tf.int32, (None, None)),rewardsSchema(tf.float32, (None,)))def penalize(responses, rewards):valid filter_fn(responses)return tf.where(valid, rewards, hparams.penalty_reward_value * tf.ones_like(rewards))utils.graph_function(queriesSchema(tf.int32, (None, None)),responsesSchema(tf.int32, (None, None)))def unpenalized_score_fn(queries, responses):return score_model.score_fn(queries, responses)# 打分函数def score_fn(queries, responses): responses postprocess(responses)score penalize(responses, unpenalized_score_fn(queries, responses))return score, responses, dict(scorescore)score_fn.stat_schemas dict(scoreSchema(tf.float32, (None,)))return score_fn折现因子 (discount factor) 1
折现因子 (\gamma) 设置为 1 这意味着未来的奖励与即时奖励具有相同的权重。
PPO 中的批次和小批次
额外添加了 micro_batch_size 来帮助处理梯度累积的情况
import numpy as np
batch_size 8
nminibatches 2
gradient_accumulation_steps 2
mini_batch_size batch_size // nminibatches
micro_batch_size mini_batch_size // gradient_accumulation_steps
data np.arange(batch_size).astype(np.float32)
print(data:, data)
print(batch_size:, batch_size)
print(mini_batch_size:, mini_batch_size)
print(micro_batch_size:, micro_batch_size)
for epoch in range(4):batch_inds np.random.permutation(batch_size)print(epoch:, epoch, batch_inds:, batch_inds)for mini_batch_start in range(0, batch_size, mini_batch_size):mini_batch_end mini_batch_start mini_batch_sizemini_batch_inds batch_inds[mini_batch_start:mini_batch_end]# optimizer.zero_grad() set optimizer to zero for gradient accumulationfor micro_batch_start in range(0, mini_batch_size, micro_batch_size):micro_batch_end micro_batch_start micro_batch_sizemicro_batch_inds mini_batch_inds[micro_batch_start:micro_batch_end]print(____⏩ a forward pass on, data[micro_batch_inds])# optimizer.step()print(⏪ a backward pass on, data[mini_batch_inds])# data: [0. 1. 2. 3. 4. 5. 6. 7.]
# batch_size: 8
# mini_batch_size: 4
# micro_batch_size: 2
# epoch: 0 batch_inds: [6 4 0 7 3 5 1 2]
# ____⏩ a forward pass on [6. 4.]
# ____⏩ a forward pass on [0. 7.]
# ⏪ a backward pass on [6. 4. 0. 7.]
# ____⏩ a forward pass on [3. 5.]
# ____⏩ a forward pass on [1. 2.]
# ⏪ a backward pass on [3. 5. 1. 2.]
# epoch: 1 batch_inds: [6 7 3 2 0 4 5 1]
# ____⏩ a forward pass on [6. 7.]
# ____⏩ a forward pass on [3. 2.]
# ⏪ a backward pass on [6. 7. 3. 2.]
# ____⏩ a forward pass on [0. 4.]
# ____⏩ a forward pass on [5. 1.]
# ⏪ a backward pass on [0. 4. 5. 1.]
# epoch: 2 batch_inds: [1 4 5 6 0 7 3 2]
# ____⏩ a forward pass on [1. 4.]
# ____⏩ a forward pass on [5. 6.]
# ⏪ a backward pass on [1. 4. 5. 6.]
# ____⏩ a forward pass on [0. 7.]
# ____⏩ a forward pass on [3. 2.]
# ⏪ a backward pass on [0. 7. 3. 2.]
# epoch: 3 batch_inds: [7 2 4 1 3 0 6 5]
# ____⏩ a forward pass on [7. 2.]
# ____⏩ a forward pass on [4. 1.]
# ⏪ a backward pass on [7. 2. 4. 1.]
# ____⏩ a forward pass on [3. 0.]
# ____⏩ a forward pass on [6. 5.]
# ⏪ a backward pass on [3. 0. 6. 5.]
基于每个标记的 KL 惩罚
代码为奖励添加了每个标记的 KL 惩罚以阻止策略与原始策略差异过大。
def compute_rewards(scores, logprobs, ref_logprobs):kl logprobs - ref_logprobs non_score_reward -self.kl_ctl.value * klrewards non_score_reward.copy()rewards[:, -1] scoresreturn rewards, non_score_reward, self.kl_ctl.valueself.compute_rewards compute_rewards以 “usually, he would” 为例它被标记化为 [23073, 11, 339, 561] 。假设我们使用 [23073] 作为查询[11, 339, 561] 作为响应。然后在默认的 gpt2 参数下响应标记将具有参考策略的对数概率 logprobs[-3.3213, -4.9980, -3.8690] 。
在第一个 PPO 更新时期和小批次更新时激活策略将具有相同的对数概率new_logprobs[-3.3213, -4.9980, -3.8690] 。因此每个标记的 KL 惩罚将为 kl new_logprobs - logprobs [0., 0., 0.] 。但是在第一个梯度反向传播后我们可能会得到 new_logprob[3.3213, -4.9980, -3.8690] 因此每个标记的 KL 惩罚变为 kl new_logprobs - logprobs [-0.3315, -0.0426, 0.6351] 。随后non_score_reward beta * kl 其中 beta 是 KL 惩罚系数 (\beta)它被添加到从奖励模型获得的 score 中以创建用于训练的 rewards 。score 仅在每个回合 ( episode ) 结束时给出可能类似于 [0.4] 然后我们有 rewards [beta * -0.3315, beta * -0.0426, beta * 0.6351 0.4] 。
每个小批次的奖励和优势白化可选择均值平移
名为 whiten 的函数如下所示基本上通过减去其均值然后除以其标准差来对 values 进行归一化。可选地whiten 可以通过 shift_meanTrue 将白化后的 values 平移到均值。
def whiten(values, shift_meanTrue):mean, var torch.mean(values), torch.var(values, unbiasedFalse)whitened (values - mean)* torch.rsqrt(var 1e-8)if not shift_mean:whitened meanreturn whitened在每个小批次中OAI 使用 whiten(rewards, shift_meanFalse) 对奖励进行白化不对均值进行平移处理 并使用平移后的均值对优势进行白化 whiten(advantages)
def loss(self, rollouts):values rollouts[values]old_logprob rollouts[logprobs]rewards rollouts[rewards]with tf.name_scope(ppo_loss):if self.hparams.ppo.whiten_rewards:rewards utils.whiten(rewards, shift_meanFalse) # 奖励白化lastgaelam 0advantages_reversed []gen_length self.hparams.task.response_lengthfor t in reversed(range(gen_length)):nextvalues values[:, t 1] if t gen_length - 1 else 0.0delta rewards[:, t] self.hparams.ppo.gamma * nextvalues - values[:, t]lastgaelam delta self.hparams.ppo.gamma * self.hparams.ppo.lam * lastgaelamadvantages_reversed.append(lastgaelam)advantages tf.stack(advantages_reversed[::-1], axis1)returns advantages valuesadvantages utils.whiten(advantages)advantages tf.stop_gradient(advantages) # Shouldnt do anything, but better not to think about itoutputs self.policy.analyze_responses_op(rollouts[queries], rollouts[responses])vpred outputs[values]vpredclipped tf.clip_by_value(vpred, values - self.hparams.ppo.cliprange_value, values self.hparams.ppo.cliprange_value)vf_losses1 tf.square(vpred - returns)vf_losses2 tf.square(vpredclipped - returns)vf_loss .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))vf_clipfrac tf.reduce_mean(tf.cast(tf.greater(vf_losses2, vf_losses1), tf.float32))logprob outputs[logprobs]ratio tf.exp(logprob - old_logprob)pg_losses -advantages * ratiopg_losses2 -advantages * tf.clip_by_value(ratio, 1.0 - self.hparams.ppo.cliprange, 1.0 self.hparams.ppo.cliprange)pg_loss tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))pg_clipfrac tf.reduce_mean(tf.cast(tf.greater(pg_losses2, pg_losses), tf.float32))loss pg_loss self.hparams.ppo.vf_coef * vf_lossentropy tf.reduce_mean(outputs[entropies])approxkl .5 * tf.reduce_mean(tf.square(logprob - old_logprob))return_mean, return_var tf.nn.moments(returns, axeslist(range(returns.shape.ndims)))value_mean, value_var tf.nn.moments(values, axeslist(range(values.shape.ndims)))stats dict(lossdict(policypg_loss, valuevf_loss, totalloss),policydict(entropyentropy, approxklapproxkl, clipfracpg_clipfrac),returnsdict(meanreturn_mean, varreturn_var),valdict(vpredtf.reduce_mean(vpred), errortf.reduce_mean((vpred - returns) ** 2),clipfracvf_clipfrac, meanvalue_mean, varvalue_var))return loss, utils.flatten_dict(stats, sep/)裁剪值函数
vpred outputs[values]
vpredclipped tf.clip_by_value(vpred, values - self.hparams.ppo.cliprange_value, values self.hparams.ppo.cliprange_value)
vf_losses1 tf.square(vpred - returns)
vf_losses2 tf.square(vpredclipped - returns)
vf_loss .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
vf_clipfrac tf.reduce_mean(tf.cast(tf.greater(vf_losses2, vf_losses1), tf.float32))代码https://github.com/vwxyzjn/lm-human-preference-detailsbloghttps://huggingface.co/blog/zh/the_n_implementation_details_of_rlhf_with_ppo
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/90301.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!