FastGPT 引申:信息抽取到知识图谱的衔接流程

文章目录

    • 信息抽取到知识图谱的衔接流程
      • 步骤1:原始信息抽取结果
      • 步骤2:数据标准化处理(Python示例)
      • 步骤3:Cypher代码动态生成(Python驱动)
    • 关键衔接逻辑说明
      • 1. 唯一标识符生成规则
      • 2. 数据映射策略
      • 3. 批处理场景示例
      • 4. 冲突处理机制
    • 可视化衔接流程

关于知识图谱构建中信息抽取结果与Cypher代码的衔接逻辑,这里通过一个完整的流程演示说明:


信息抽取到知识图谱的衔接流程

步骤1:原始信息抽取结果

{"athlete": "Yusuf Dikeç","nationality": "Turkey","event": "10m Air Pistol","medal": "Silver","game": {"year":2024, "location":"Paris"},"score": 243.7
}

步骤2:数据标准化处理(Python示例)

# 将抽取结果转换为图谱节点/关系模板
def convert_to_graph_data(extracted_data):return {"athlete": {"id": f"ATH_{extracted_data['nationality']}_001","name": extracted_data["athlete"],"nationality": extracted_data["nationality"]},"event": {"id": "EVT_10MAP","name": extracted_data["event"],"discipline": "Shooting"},"relationship": {"type": "WON_MEDAL","properties": {"type": extracted_data["medal"],"score": extracted_data["score"]}}}# 输出结构化图谱数据
graph_data = convert_to_graph_data(extracted_data)
"""
{"athlete": {"id": "ATH_Turkey_001", "name": "Yusuf Dikeç", ...},"event": {"id": "EVT_10MAP", "name": "10m Air Pistol", ...},"relationship": {"type": "WON_MEDAL", "properties": {...}}
}
"""

步骤3:Cypher代码动态生成(Python驱动)

from neo4j import GraphDatabaseclass Neo4jLoader:def __init__(self, uri, user, password):self.driver = GraphDatabase.driver(uri, auth=(user, password))def create_relationship(self, graph_data):with self.driver.session() as session:# 节点创建(使用MERGE防止重复)session.run("""MERGE (a:Athlete {id: $a_id}) SET a.name = $a_name, a.nationality = $a_nationalityMERGE (e:Event {id: $e_id})SET e.name = $e_name, e.discipline = $e_discipline""", a_id=graph_data["athlete"]["id"],a_name=graph_data["athlete"]["name"],a_nationality=graph_data["athlete"]["nationality"],e_id=graph_data["event"]["id"],e_name=graph_data["event"]["name"],e_discipline=graph_data["event"]["discipline"])# 关系创建session.run("""MATCH (a:Athlete {id: $a_id}), (e:Event {id: $e_id})CREATE (a)-[r:WON_MEDAL]->(e)SET r += $props""",a_id=graph_data["athlete"]["id"],e_id=graph_data["event"]["id"],props=graph_data["relationship"]["properties"])# 使用示例
loader = Neo4jLoader("bolt://localhost:7687", "neo4j", "password")
loader.create_relationship(graph_data)

关键衔接逻辑说明

1. 唯一标识符生成规则

# 运动员ID生成逻辑
f"ATH_{nationality_code}_{sequence_num}"  # 示例: ATH_Turkey_001# 赛事ID生成逻辑
f"EVT_{discipline_code}{event_code}"     # 示例: EVT_10MAP (10m Air Pistol)

2. 数据映射策略

抽取字段图谱对应位置转换逻辑
athleteAthlete节点name属性直接映射
medalWON_MEDAL关系type属性枚举值转换(Silver→"银牌")
scoreWON_MEDAL关系score属性数值类型校验
game.yearGame节点year属性关联到独立节点

3. 批处理场景示例

# 当有多个运动员数据时
batch_data = [graph_data1, graph_data2, graph_data3]for data in batch_data:# 自动生成带序列号的IDdata["athlete"]["id"] = generate_athlete_id(data["nationality"], seq_num) # 执行节点和关系创建loader.create_relationship(data)

4. 冲突处理机制

// 使用MERGE+ON CREATE保证幂等性
MERGE (a:Athlete {id: $a_id}) 
ON CREATE SET a.createTime = timestamp()
ON MATCH SET a.updateTime = timestamp()// 关系存在性检查
OPTIONAL MATCH (a)-[r:WON_MEDAL]->(e) 
WHERE r.score < $new_score
DELETE r
CREATE (a)-[r_new:WON_MEDAL]->(e)

可视化衔接流程

原始文本 → 信息抽取 → 标准化JSON → Cypher模板填充 → 图数据库写入(Mistral-7B)       ↑            ↓数据校验 ← 类型转换

通过这种方式,信息抽取结果中的非结构化数据被系统地转化为知识图谱中的节点、属性和关系,同时保证了数据的一致性和可追溯性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/72588.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Webshell 入侵与防御全攻略

Webshell&#xff0c;是指攻击者上传到网站的远程控制后门&#xff0c;允许黑客像管理员一样远程控制网站&#xff0c;执行恶意命令&#xff0c;甚至完全接管网站。本文将带你深入了解 Webshell 的入侵方式以及相应的防御措施&#xff0c;帮助你加固自己的网站防线。 什么是 W…

NL2SQL-基于Dify+阿里通义千问大模型,实现自然语音自动生产SQL语句

本文基于Dify阿里通义千问大模型&#xff0c;实现自然语音自动生产SQL语句功能&#xff0c;话不多说直接上效果图 我们可以试着问他几个问题 查询每个部门的员工数量SELECT d.dept_name, COUNT(e.emp_no) AS employee_count FROM employees e JOIN dept_emp de ON e.emp_no d…

双链路提升网络传输的可靠性扩展可用带宽

为了提升网络传输的可靠性或增加网络可用带宽&#xff0c; 通常使用双链路冗余备份或者双链路聚合的方式。 本文介绍几种双链路网络通信的案例。 5GWiFi冗余传输 双Socket绑定不同网络接口&#xff1a;通过Android的ConnectivityManager绑定5G蜂窝网络和WiFi的Socket连接&…

Ubuntu22.04安装Ollama部署DeepSeek-R1:32B模型

一、环境准备 1.硬件要求 GPU: 至少 NVIDIA A30/A100 (显存 ≥ 24GB)内存: ≥ 64GB RAM存储: ≥ 100GB 可用空间 (模型文件约 60GB)2.软件依赖 # 验证NVIDIA驱动 nvidia-smi二、Ollama安装 方法 1:install.sh安装 运行一下安装命令: curl -fsSL https://ollama.com/inst…

LeetCode 解题思路 10(Hot 100)

解题思路&#xff1a; 上边&#xff1a; 从左到右遍历顶行&#xff0c;完成后上边界下移&#xff08;top&#xff09;。右边&#xff1a; 从上到下遍历右列&#xff0c;完成后右边界左移&#xff08;right–&#xff09;。下边&#xff1a; 从右到左遍历底行&#xff0c;完成后…

Checkpoint 模型与Stable Diffusion XL(SDXL)模型的区别

Checkpoint 模型与 Stable Diffusion XL&#xff08;SDXL&#xff09;模型 在功能、架构和应用场景上有显著区别&#xff0c;以下是主要差异的总结&#xff1a; 1. 基础架构与定位 Checkpoint 模型 是基于 Stable Diffusion 官方基础模型&#xff08;如 SD 1.4/1.5&#xff09;…

GCC RISCV 后端 -- C语言语法分析过程

在 GCC 编译一个 C 源代码时&#xff0c;先会通过宏处理&#xff0c;形成 一个叫转译单元&#xff08;translation_unit&#xff09;&#xff0c;接着进行语法分析&#xff0c;C 的语法分析入口是 static void c_parser_translation_unit(c_parser *parser); 接着就通过类似递…

第十五届蓝桥杯Scratch12月stema选拔赛真题—消失的水母

消失的水母 编程实现&#xff1a; 消失的水母。&#xff08;角色、背景非源素材&#xff09; 具体要求&#xff1a; 1、每次点击绿旗&#xff0c;水母说“请输入 2&#xff5e;10 的整数”&#xff0c;同时在舞台下方显示输入框&#xff0c;如图所示; 完整题目可点击下方链…

Redis设计与实现-数据结构

Redis数据结构 1、RedisObject对象2、简单动态字符串2.1 SDS定义2.2 SDS与C语言的区别2.3 SDS的空间分配策略2.3.1 空间预分配2.3.2 惰性空间释放 2.4 SDS的API 3、链表3.1 链表的定义3.2 链表的API 4、字典4.1 字典的定义4.2 哈希算法4.3 哈希表的扩缩4.3.1 哈希表扩缩的判断依…

由麻省理工学院计算机科学与人工智能实验室等机构创建低成本、高效率的物理驱动数据生成框架,助力接触丰富的机器人操作任务

2025-02-28&#xff0c;由麻省理工学院计算机科学与人工智能实验室&#xff08;CSAIL&#xff09;和机器人与人工智能研究所的研究团队创建了一种低成本的数据生成框架&#xff0c;通过结合物理模拟、人类演示和基于模型的规划&#xff0c;高效生成大规模、高质量的接触丰富型机…

RK3588开发笔记-fiq_debugger: cpu 0 not responding, reverting to cpu 3问题解决

目录 前言 一、FIQ Debugger介绍 二、rockchip平台配置方法 三、问题分析定位 IRQF_NOBALANCING 的含义 总结 前言 在进行 RK3588 开发的过程中,我们可能会遇到各种棘手的问题。其中,“fiq_debugger: cpu 0 not responding, reverting to cpu 3” 这个错误出现在RK3588的…

计算机视觉|ViT详解:打破视觉与语言界限

一、ViT 的诞生背景 在计算机视觉领域的发展中&#xff0c;卷积神经网络&#xff08;CNN&#xff09;一直占据重要地位。自 2012 年 AlexNet 在 ImageNet 大赛中取得优异成绩后&#xff0c;CNN 在图像分类任务中显示出强大能力。随后&#xff0c;VGG、ResNet 等深度网络架构不…

SpringTask 引起的错误

SpringTask 引起的错误 1. 场景 在使用 SpringBoot 编写后台程序时&#xff0c;当在浏览器页面中发起请求时&#xff0c;MP 自动填充来完成一些字段的填充&#xff0c;例如创建时间、创建人、更新时间、更新人等。但是当编写微信小程序时&#xff0c;由于一些字段无法进行自动…

FPGA学习篇——Verilog学习4

1.1 结构语句 结构语句主要是initial语句和always语句&#xff0c;initial 语句它在模块中只执行一次&#xff0c;而always语句则不断重复执行&#xff0c;以下是一个比较好解释的图: (图片来源于知乎博主罗成&#xff0c;画的很好很直观&#xff01;) 1.1.1 initial语句 ini…

【Linux】【网络】UDP打洞-->不同子网下的客户端和服务器通信(未成功版)

【Linux】【网络】UDP打洞–>不同子网下的客户端和服务器通信&#xff08;未成功版&#xff09; 上次说基于UDP的打洞程序改了五版一直没有成功&#xff0c;要写一下问题所在&#xff0c;但是我后续又查询了一些资料&#xff0c;成功实现了&#xff0c;这次先写一下未成功的…

【Python编程】高性能Python Web服务部署架构解析

一、FastAPI 与 Uvicorn/Gunicorn 的协同 1. 开发环境&#xff1a;Uvicorn 直接驱动 作用&#xff1a;Uvicorn 作为 ASGI 服务器&#xff0c;原生支持 FastAPI 的异步特性&#xff0c;提供热重载&#xff08;--reload&#xff09;和高效异步请求处理。 启动命令&#xff1a; u…

前端权限流程(基于rbac实现思想)

1. 权限控制 1.1. 实现思想 基于rbac权限控制思想实现&#xff0c;给用户分配角色&#xff0c;给角色分配权限 给用户分配角色业务 注意&#xff1a;上方图片是个示例图&#xff0c;代表给用户分配职位(角色)&#xff0c;页面中使用了Element-plus的el- checkbox组件…

软件高级架构师 - 软件工程

补充中 测试 测试类型 静态测试 动态测试 测试阶段 单元测试中&#xff0c;包含性能测试&#xff0c;如下&#xff1a; 集成测试中&#xff0c;包含以下&#xff1a; 维护 遗留系统处置 高水平低价值&#xff1a;采取集成 对于这类系统&#xff0c;采取 集成 的方式&…

python3.13安装教程【2025】python3.13超详细图文教程(包含安装包)

文章目录 前言一、python3.13安装包下载二、Python 3.13安装步骤三、Python3.13验证 前言 本教程将为你详细介绍 Python 3.13 python3.13安装教程&#xff0c;帮助你顺利搭建起 Python 3.13 开发环境&#xff0c;快速投身于 Python 编程的精彩实践中。 一、python3.13安装包下…

【极客时间】浏览器工作原理与实践-2 宏观视角下的浏览器 (6讲) - 2.5 渲染流程(上):HTML、CSS和JavaScript,是如何变成页面的?

https://time.geekbang.org/column/article/118205 2.5 渲染流程&#xff08;上&#xff09;&#xff1a;HTML、CSS和JavaScript&#xff0c;是如何变成页面的&#xff1f; 2.4讲了导航相关的流程&#xff0c;那导航被提交后又会怎么样呢&#xff1f; 就进入了渲染阶段。 这…