《机器学习数学基础》补充资料:过渡矩阵和坐标变换推导

尽管《机器学习数学基础》这本书,耗费了比较长的时间和精力,怎奈学识有限,错误难免。因此,除了在专门的网页( 勘误和修订 )中发布勘误和修订内容之外,对于重大错误,我还会以专题的形式发布,并做出更多的相关解释。

更欢迎有识之士、广大读者朋友,指出其中的错误。非常感谢大家的帮助。

在《机器学习数学基础》第29页到第30页,推导过渡矩阵和坐标变换的时候,原文有一些错误。下面将推导过程重新编写如下,并且增加一些更详细的说明。此说明没有写入原文,是为了协助理解这段推导而作。

针对性的修改,请参阅:勘误与修订


{ α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn} α i \pmb{\alpha}_i αi 表示列向量) 是某个向量空间的一个基,则该空间中一个向量 O A → \overrightarrow{OA} OA 可以描述为:

O A → = x 1 α 1 + ⋯ + x n α n (1.3.4) \overrightarrow{OA} = x_1\pmb{\alpha}_1 + \cdots + x_n\pmb{\alpha}_n\tag{1.3.4} OA =x1α1++xnαn(1.3.4)
其中的 ( x 1 , ⋯ , x n ) (x_1, \cdots, x_n) (x1,,xn) 即为向量 O A → \overrightarrow{OA} OA 在基 { α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn}坐标

如果有另外一个基 { β 1 , ⋯ , β n } \{\pmb{\beta}_1, \cdots, \pmb{\beta}_n\} {β1,,βn} β i \pmb{\beta}_i βi 表示列向量),向量 O A → \overrightarrow{OA} OA 又描述为:

O A → = x 1 ′ β 1 + ⋯ + x n ′ β n (1.3.5) \overrightarrow{OA} = x_1'\pmb{\beta}_1 + \cdots + x_n'\pmb{\beta}_n\tag{1.3.5} OA =x1β1++xnβn(1.3.5)
那么,同一个向量空间的这两个基有没有关系呢?有。不要忘记,基是一个向量组,例如基 { β 1 , ⋯ , β n } \{\pmb{\beta}_1, \cdots, \pmb{\beta}_n\} {β1,,βn} 中的每个向量也在此向量空间,所以可以用基 { α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn} 线性表出,即:

{ β 1 = b 11 α 1 + ⋯ + b n 1 α n ⋮ β n = b 1 n α 1 + ⋯ + b n n α n \begin{cases}\begin{split}\pmb{\beta}_1 &= b_{11}\pmb{\alpha}_1 + \cdots + b_{n1}\pmb{\alpha}_n \\ \vdots \\\pmb{\beta}_n &= b_{1n}\pmb{\alpha}_1 + \cdots + b_{nn}\pmb{\alpha}_n \end{split}\end{cases} β1βn=b11α1++bn1αn=b1nα1++bnnαn
以矩阵(这里提前使用了矩阵的概念,是因为本书已经在前言中声明,不假定读者完全没有学过高等数学。关于矩阵的更详细内容,请参阅第2章)的方式,可以表示为:

[ β 1 ⋯ β n ] = [ α 1 ⋯ α n ] [ b 11 ⋯ b 1 n ⋮ b n 1 ⋯ b n n ] (1.3.6) \begin{equation} \begin{split} \begin{bmatrix}\pmb{\beta}_1&\cdots&\pmb{\beta}_n\end{bmatrix} = \begin{bmatrix}\pmb{\alpha}_1&\cdots&\pmb{\alpha}_n\end{bmatrix}\begin{bmatrix}b_{11} & \cdots & b_{1n}\\\vdots\\b_{n1} & \cdots &b_{nn}\end{bmatrix} \end{split} \end{equation}\tag{1.3.6} [β1βn]=[α1αn] b11bn1b1nbnn (1.3.6)
其中:

P = [ b 11 ⋯ b 1 n ⋮ b n 1 ⋯ b n n ] \pmb P = \begin{bmatrix}b_{11} & \cdots & b_{1n}\\\vdots\\b_{n1} & \cdots &b_{nn}\end{bmatrix} P= b11bn1b1nbnn
称为基 { α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn} 向基 { β 1 , ⋯ , β n } \{\pmb{\beta}_1, \cdots, \pmb{\beta}_n\} {β1,,βn}过渡矩阵。显然,过渡矩阵实现了一个基向另一个基的变换。

定义 在同一个向量空间,由基 { α 1 ⋯ α n } \{\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n\} {α1αn} 向基 { β 1 ⋯ β n } \{\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n\} {β1βn} 的过渡矩阵是 P \pmb{P} P ,则:
[ β 1 ⋯ β n ] = [ α 1 ⋯ α n ] P [\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n] = [\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n]\pmb P [β1βn]=[α1αn]P

根据(1.3.5)式,可得:

x 1 ′ β 1 + ⋯ + x n ′ β n = x 1 ′ b 11 α 1 + ⋯ + x 1 ′ b n 1 α n + ⋯ + x n ′ b 1 n α 1 + ⋯ + x n ′ b n n α n = ( x 1 ′ b 11 + ⋯ + x n ′ b 1 n ) α 1 + ⋯ + ( x 1 ′ b n 1 + ⋯ + x n ′ b n n ) α n \begin{split}x_1'\pmb{\beta}_1 + \cdots + x_n'\pmb{\beta}_n &= x_1'b_{11}\pmb{\alpha}_1 + \cdots + x_1'b_{n1}\pmb{\alpha}_n \\ & \quad + \cdots \\ & \quad + x_n'b_{1n}\pmb{\alpha}_1 + \cdots + x_n'b_{nn}\pmb{\alpha}_n \\ &=(x_1'b_{11}+ \cdots + x_n'b_{1n})\pmb{\alpha}_1 \\ & \quad + \cdots \\ &\quad+(x_1'b_{n1} + \cdots + x_n'b_{nn})\pmb{\alpha}_n\end{split} x1β1++xnβn=x1b11α1++x1bn1αn++xnb1nα1++xnbnnαn=(x1b11++xnb1n)α1++(x1bn1++xnbnn)αn
(1.3.4)式 和(1.3.5)式描述的是同一个向量,所以:

{ x 1 = x 1 ′ b 11 + ⋯ + x n ′ b 1 n ⋮ x n = x 1 ′ b n 1 + ⋯ + x n ′ b n n \begin{cases}\begin{split}x_1 &= x_1'b_{11} + \cdots + x_n'b_{1n}\\&\vdots\\x_n &= x_1'b_{n1} + \cdots + x_n'b_{nn}\end{split}\end{cases} x1xn=x1b11++xnb1n=x1bn1++xnbnn
如果写成矩阵形式,即:

[ x 1 ⋮ x n ] = [ b 11 ⋯ b 1 n ⋮ b n 1 ⋯ b n n ] [ x 1 ′ ⋮ x n ′ ] (1.3.7) \begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix} = \begin{bmatrix}b_{11} & \cdots & b_{1n}\\\vdots\\b_{n1} & \cdots &b_{nn}\end{bmatrix}\begin{bmatrix}x_1'\\\vdots\\x_n'\end{bmatrix}\tag{1.3.7} x1xn = b11bn1b1nbnn x1xn (1.3.7)
表示了在同一个向量空间中,向量在不同基下的坐标之间的变换关系,我们称为坐标变换公式

定义 在某个向量空间中,由基 { α 1 ⋯ α n } \{\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n\} {α1αn} 向基 { β 1 ⋯ β n } \{\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n\} {β1βn} 的过渡矩阵是 P \pmb{P} P 。某向量在基 { α 1 ⋯ α n } \{\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n\} {α1αn} 的坐标是 x = [ x 1 ⋮ x n ] \pmb{x}=\begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix} x= x1xn ,在基 { β 1 ⋯ β n } \{\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n\} {β1βn} 的坐标是 x ′ = [ x 1 ′ ⋮ x n ′ ] \pmb x'=\begin{bmatrix}x_1'\\\vdots \\x_n'\end{bmatrix} x= x1xn ,这两组坐标之间的关系是:
x = P x ′ \pmb x = \pmb P \pmb x' x=Px


《机器学习数学基础》第29页到第30页的错误,是我讲授《机器学习数学基础》的课程时发现的。现在深刻体会到:教,然后知不足。教学相长,认真地研究教学,也是自我提升。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/71792.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解锁DeepSpeek-R1大模型微调:从训练到部署,打造定制化AI会话系统

目录 1. 前言 2.大模型微调概念简述 2.1. 按学习范式分类 2.2. 按参数更新范围分类 2.3. 大模型微调框架简介 3. DeepSpeek R1大模型微调实战 3.1.LLaMA-Factory基础环境安装 3.1大模型下载 3.2. 大模型训练 3.3. 大模型部署 3.4. 微调大模型融合基于SpirngBootVue2…

第七课:Python反爬攻防战:Headers/IP代理与验证码

在爬虫开发过程中,反爬虫机制成为了我们必须面对的挑战。本文将深入探讨Python爬虫中常见的反爬机制,并详细解析如何通过随机User-Agent生成、代理IP池搭建以及验证码识别来应对这些反爬策略。文章将包含完整的示例代码,帮助读者更好地理解和…

Vue3——Fragment

文章目录 一、Fragment的核心意义1. 解决Vue2的单根限制问题2. 减少不必要的 DOM 嵌套3. 语义化和结构化 二、Fragment 的实现原理三、Fragment 使用方式1. 基本用法2. 结合条件渲染3. 动态组件 四、实际应用场景1. 列表/表格组件2. 布局组件3. 语义化标签 五、注意事项1. 属性…

字节跳动C++客户端开发实习生内推-抖音基础技术

智能手机爱好者和使用者,追求良好的用户体验; 具有良好的编程习惯,代码结构清晰,命名规范; 熟练掌握数据结构与算法、计算机网络、操作系统、编译原理等课程; 熟练掌握C/C/OC/Swift一种或多种语言&#xff…

【Linux学习笔记】Linux基本指令分析和权限的概念

【Linux学习笔记】Linux基本指令分析和权限的概念 🔥个人主页:大白的编程日记 🔥专栏:Linux学习笔记 文章目录 【Linux学习笔记】Linux基本指令分析和权限的概念前言一. 指令的分析1.1 alias 指令1.2 grep 指令1.3 zip/unzip 指…

数据库索引的作用:提升数据检索效率的关键

在数据库管理系统中,数据如同浩瀚海洋中的宝藏,如何快速准确地找到所需信息,成为了一个关键问题。这时候,数据库索引就如同一张精确的航海图,指引着我们高效地定位数据。那么,数据库索引究竟是什么&#xf…

Lab18_ SQL injection with filter bypass via XML encoding

文章目录 前言:进入实验室构造 payload 前言: 实验室标题为: 通关 XML 编码绕过过滤器的 SQL 注入 简介: 此实验室的库存检查功能中存在 SQL 注入漏洞。查询结果在应用程序的响应中返回,因此您可以使用 UNION 攻击…

计算机性能指标(计网笔记)

计算机性能指标:速率、带宽、吞吐率、时延、时延带宽积、往返时间RTT、利用率 速率 数据的传输速率,单位bit/s,或kbit/s,Mbit/s,Gbit/s 4*10**10bit/s40Gbit/s 常用带宽单位: 千比每秒kb/s 兆比每秒Mb/s…

同为科技智能PDU在数据中心场景的应用与解决方案

数据中心当前处于一个快速发展和技术变革的特殊时期,全新的人工智能应用正在重塑整个世界,为社会带来便捷的同时,也为数据中心的发展带来了新的机遇和挑战。智能算例的爆发式增长,对数据中心提出了大算力、高性能的新需求&#xf…

蓝桥杯 C++ b组 积木画深度解析

题目大意:有两种积木块,I型和L型,给定一段2*N的画布,问摆满总共有多少种方式? 解法:状态压缩dp(强烈建议拿个笔跟着画一下状态,慢慢就懂了) 首先我们规定一下此题解中提…

小程序事件系统 —— 32 事件系统 - 事件分类以及阻止事件冒泡

在微信小程序中,事件分为 冒泡事件 和 非冒泡事件 : 冒泡事件:当一个组件的事件被触发后,该事件会向父节点传递;(如果父节点中也绑定了一个事件,父节点事件也会被触发,也就是说子组…

【从0到1搞懂大模型】神经网络的实现:数据策略、模型调优与评估体系(3)

一、数据集的划分 (1)按一定比例划分为训练集和测试集 我们通常取8-2、7-3、6-4、5-5比例切分,直接将数据随机划分为训练集和测试集,然后使用训练集来生成模型,再用测试集来测试模型的正确率和误差,以验证…

Django与数据库

我叫补三补四,很高兴见到大家,欢迎一起学习交流和进步 今天来讲一讲alpha策略制定后的测试问题 mysql配置 Django模型体现了面向对象的编程技术,是一种面向对象的编程语言和不兼容类型能相互转化的编程技术,这种技术也叫ORM&#…

从 GitHub 批量下载项目各版本的方法

一、脚本功能概述 这个 Python 脚本的主要功能是从 GitHub 上下载指定项目的各个发布版本的压缩包(.zip 和 .tar.gz 格式)。用户需要提供两个参数:一个是包含项目信息的 CSV 文件,另一个是用于保存下载版本信息的 CSV 文件。脚本…

ECC升级到S/4 HANA的功能差异 物料、采购、库存管理对比指南

ECC升级到S/4 HANA后,S4 将数据库更换为HANA后性能有一定提升,对于自开发程序,可以同时将计算和部分业务逻辑下推到HANA数据库层,减少应用层和数据库层的交互次数和数据传输,只返回需要的结果到应用层和显示层。提升自…

表格columns拼接两个后端返回的字段(以umi框架为例)

在用组件对前端项目进行开发时,我们会遇到以下情况:项目原型中有取值范围这个表字段,需要存放最小取值到最大取值。 而后端返回给我们的数据是返回了一个最小值和一个最大值, 在columns中我们需要对这两个字段进行拼接&#xff0…

使用Galaxy创建生物信息学工作流的步骤详解

李升伟 整理 Galaxy 是一个基于 Web 的生物信息学平台,提供了直观的用户界面和丰富的工具,帮助用户创建和管理生物信息学工作流。以下是使用 Galaxy 创建生物信息学工作流的主要步骤: 1. 访问 Galaxy 平台 打开 Galaxy 的官方网站&#xff…

蓝桥杯—走迷宫(BFS算法)

题目描述 给定一个NM 的网格迷宫 G。G 的每个格子要么是道路,要么是障碍物(道路用 11表示,障碍物用 0 表示)。 已知迷宫的入口位置为 (x1​,y1​),出口位置为 (x2​,y2​)。问从入口走到出口,最少要走多少…

【GPT入门】第12课 FunctionCall 生成数据库sql代码

【GPT入门】第12课 FunctionCall 生成数据库sql代码 1.概述2. 代码3.执行结果 1.概述 如下代码的任务:自然语言问ai,自动生成sql并回答用户 实现思路: 步骤1. ai会把用户的问题,转为sql 步骤2. 程序执行sql 步骤3.把执行的sql结果&#xff…

《白帽子讲 Web 安全》之身份认证

目录 引言 一、概述 二、密码安全性 三、认证方式 (一)HTTP 认证 (二)表单登录 (三)客户端证书 (四)一次性密码(OTP) (五)多因…