FastGPT 源码:基于 LLM 实现 Rerank (含Prompt)

文章目录

    • 基于 LLM 实现 Rerank
      • 函数定义
      • 预期输出
      • 实现说明
      • 使用建议
      • 完整 Prompt

基于 LLM 实现 Rerank

下边通过设计 Prompt 让 LLM 实现重排序的功能。

函数定义

class LLMReranker:def __init__(self, llm_client):self.llm = llm_clientdef rerank(self, query: str, documents: list[dict]) -> list[dict]:# 构建 promptprompt = self._build_rerank_prompt(query, documents)# 调用 LLMresponse = self.llm.chat.completions.create(model="gpt-3.5-turbo",temperature=0,  # 降低随机性messages=[{"role": "system", "content": """你是一个专业的搜索结果重排序专家。
你的任务是:
1. 评估每个文档与用户查询的相关性
2. 给出0-1之间的相关性分数
3. 解释评分理由
4. 按相关性从高到低排序评分标准:
- 0.8-1.0: 完全相关,直接回答问题
- 0.6-0.8: 高度相关,包含大部分所需信息
- 0.4-0.6: 部分相关,包含一些相关信息
- 0.0-0.4: 基本不相关请以JSON格式返回结果。"""},{"role": "user", "content": prompt}])# 解析响应try:results = eval(response.choices[0].message.content)return resultsexcept:return []def _build_rerank_prompt(self, query: str, documents: list[dict]) -> str:prompt = f"""请对以下文档进行重排序:用户查询: {query}待排序文档:
"""for i, doc in enumerate(documents, 1):prompt += f"""
文档{i}:
ID: {doc['id']}
内容: {doc['text']}
"""prompt += """
请以如下JSON格式返回重排序结果:
[{"id": "文档ID","score": 相关性分数,"reason": "评分理由"},...
]
"""return prompt# 使用示例
def main():# 初始化查询和文档query = "Python如何处理JSON数据?"documents = [{"id": "doc1","text": "Python提供了json模块来处理JSON数据。使用json.loads()可以将JSON字符串转换为Python对象,使用json.dumps()可以将Python对象转换为JSON字符串。",},{"id": "doc2", "text": "在Python中,字典(dict)是一种常用的数据结构,它的格式与JSON非常相似。你可以使用字典来存储键值对数据。",},{"id": "doc3","text": "Python是一种面向对象的编程语言,支持类和对象的概念。你可以创建自定义类来组织数据和行为。",}]# 初始化 LLM client (这里以 OpenAI 为例)from openai import OpenAIclient = OpenAI()# 执行重排序reranker = LLMReranker(client)results = reranker.rerank(query, documents)# 打印结果print("\n查询:", query)print("\n重排序结果:")for i, result in enumerate(results, 1):print(f"\n{i}. 文档ID: {result['id']}")print(f"   相关性分数: {result['score']}")print(f"   评分理由: {result['reason']}")

预期输出

[{"id": "doc1","score": 0.95,"reason": "文档直接回答了如何处理JSON数据的问题,提供了具体的json模块使用方法(loads和dumps函数),信息完整且准确。"},{"id": "doc2","score": 0.65,"reason": "文档提到了Python字典与JSON的关系,对理解JSON处理有帮助,但没有直接说明处理方法。"},{"id": "doc3","score": 0.2,"reason": "文档只介绍了Python的面向对象特性,与JSON数据处理无直接关系。"}
]

实现说明

  1. 简单易用:

    • 不需要额外的模型
    • 只依赖LLM API
    • 实现逻辑清晰
  2. 灵活性强:

    • 可以通过修改prompt调整评分标准
    • 可以获取评分理由
    • 支持多维度评估
  3. 可解释性好:

    • 每个分数都有明确的理由
    • 评分标准透明
    • 便于调试和优化
  4. 适应性强:

    • 可处理各种领域的问题
    • 不需要领域特定训练
    • 支持多语言

使用建议

  1. Prompt优化:
# 可以添加更多评分维度
"""
评分维度:
1. 相关性: 内容与查询的关联程度
2. 完整性: 信息的完整程度
3. 准确性: 信息的准确程度
4. 时效性: 信息的新旧程度
"""
  1. 批量处理:
# 对于大量文档,可以分批处理
def batch_rerank(self, query: str, documents: list, batch_size: int = 5):results = []for i in range(0, len(documents), batch_size):batch = documents[i:i + batch_size]batch_results = self.rerank(query, batch)results.extend(batch_results)return sorted(results, key=lambda x: x['score'], reverse=True)
  1. 错误处理:
try:response = self.llm.chat.completions.create(...)results = eval(response.choices[0].message.content)
except Exception as e:print(f"重排序错误: {str(e)}")# 返回原始顺序return [{"id": doc["id"], "score": 0.5} for doc in documents]
  1. 缓存结果:
from functools import lru_cache@lru_cache(maxsize=1000)
def cached_rerank(self, query: str, doc_key: str):# 实现缓存逻辑pass

这种基于LLM的重排序方案特别适合:

  1. 快速原型验证
  2. 小规模应用
  3. 需要高可解释性的场景
  4. 多语言或跨领域应用

完整 Prompt

你是一个专业的搜索结果重排序专家。你的任务是评估每个文档与用户查询的相关性,并给出排序。评分标准:
1. 相关性分数范围: 0.0-1.0
- 0.8-1.0: 完全相关,直接回答问题
- 0.6-0.8: 高度相关,包含大部分所需信息
- 0.4-0.6: 部分相关,包含一些相关信息
- 0.0-0.4: 基本不相关2. 评分维度:
- 相关性: 文档内容是否直接回答查询问题
- 完整性: 回答的信息是否完整
- 准确性: 信息是否准确专业
- 直接性: 是否需要用户进一步推理或处理用户查询: Python如何处理JSON数据?待评估文档:
文档1:
ID: doc1
内容: Python提供了json模块来处理JSON数据。使用json.loads()可以将JSON字符串转换为Python对象,使用json.dumps()可以将Python对象转换为JSON字符串。文档2:
ID: doc2
内容: 在Python中,字典(dict)是一种常用的数据结构,它的格式与JSON非常相似。你可以使用字典来存储键值对数据。文档3:
ID: doc3
内容: Python是一种面向对象的编程语言,支持类和对象的概念。你可以创建自定义类来组织数据和行为。请按以下JSON格式返回重排序结果,必须包含id字段:
[
"文档ID",
...
]注意:
1. 结果必须按score从高到低排序
2. 结果中只需要给出id字段
3. 返回格式必须是合法的JSON格式,不要做任何解释

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/71391.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 1745.分割回文串 IV:动态规划(用III或II能直接秒)

【LetMeFly】1745.分割回文串 IV:动态规划(用III或II能直接秒) 力扣题目链接:https://leetcode.cn/problems/palindrome-partitioning-iv/ 给你一个字符串 s ,如果可以将它分割成三个 非空 回文子字符串,…

25年3月5日

1.思维导图 2.不太会 #include "head.h" int main(int argc, const char *argv[]) {int fdopen("../xiaoxin.bmp","O_RDONLY");if(fd-1)printf("open error");//大小struct stat st;if(stat("…

全球首创!微软发布医疗AI助手,终结手写病历时代

今天凌晨,微软发布了医疗界首个用于临床工作流程的AI助手Microsoft Dragon Copilot。 Dragon Copilot是基于语音文本的混合架构,能够将医生的语音或临床口述内容实时转换为文本。例如,医生可以通过语音输入患者的病历信息、医嘱或诊断结果&a…

[自动驾驶-传感器融合] 多激光雷达的外参标定

文章目录 引言外参标定原理ICP匹配示例参考文献 引言 多激光雷达系统通常用于自动驾驶或机器人,每个雷达的位置和姿态不同,需要将它们的数据统一到同一个坐标系下。多激光雷达外参标定的核心目标是通过计算不同雷达坐标系之间的刚性变换关系&#xff08…

Blazor-路由模板(下)

路由约束 类型约束 我们这里使用{id:int}限制路由&#xff0c;id为int类型&#xff0c;并且路由参数 id 对应的 Id 属性也必须是 int 类型。我们试试能否正常访问 page "/demoPage/{id:int}" <h3>demoPage</h3> <h2>路由参数Id&#xff1a;Id&l…

多线程-JUC源码

简介 JUC的核心是AQS&#xff0c;大部分锁都是基于AQS扩展出来的&#xff0c;这里先结合可重入锁和AQS&#xff0c;做一个讲解&#xff0c;其它的锁的实现方式也几乎类似 ReentrantLock和AQS AQS的基本结构 AQS&#xff0c;AbstractQueuedSynchronizer&#xff0c;抽象队列…

通过多线程获取RV1126的AAC码流

目录 一RV1126多线程获取音频编码AAC码流的流程 1.1AI模块的初始化并使能 1.2AENC模块的初始化 ​​​​​​​1.3绑定AI模块和AENC模块 ​​​​​​​1.4多线程获取每一帧AAC码流 ​​​​​​​1.5每个AAC码流添加ADTSHeader头部 ​​​​​​​1.6写入具体每一帧AAC的…

JVM常用概念之对象初始化的成本

在JVM常用概念之新对象实例化博客中我讲到了对象的实例化&#xff0c;主要包含分配&#xff08;TLAB&#xff09;、系统初始化、用户初始化&#xff0c;而我在JVM常用概念之线程本地分配缓冲区&#xff08;ThreadLocal Allocation Buffer&#xff0c;TLAB&#xff09;博客中也讲…

java后端开发day27--常用API(二)正则表达式爬虫

&#xff08;以下内容全部来自上述课程&#xff09; 1.正则表达式&#xff08;regex&#xff09; 可以校验字符串是否满足一定的规则&#xff0c;并用来校验数据格式的合法性。 1.作用 校验字符串是否满足规则在一段文本中查找满足要求的内容 2.内容定义 ps&#xff1a;一…

AI---DevOps常备工具(‌AI-Integrated DevOps Essential Tools)

AI---DevOps常备工具 技术领域正在迅速发展&#xff0c;随着我们步入 2025 年&#xff0c;有一点是明确的&#xff1a;人工智能&#xff08;AI&#xff09;不再只是一个流行词&#xff0c;它是每个 DevOps 工程师都需要掌握的工具。随着云环境的复杂性增加、对更快部署的需求以…

Pytorch中的主要函数

目录 一、torch.manual_seed(seed)二、torch.cuda.manual_seed(seed)三、torch.rand(*size, outNone, dtypeNone, layouttorch.strided, deviceNone, requires_gradFalse)四、给大家写一个常用的自动选择电脑cuda 或者cpu 的小技巧五、torch.version.cuda&#xff1b;torch.bac…

Spring Boot中对接Twilio以实现发送验证码和验证短信码

Twilio介绍 Twilio是一家提供云通信服务的公司&#xff0c;旨在帮助开发者和企业通过简单的API实现各种通信功能。以下是Twilio的一些主要特点和服务介绍&#xff1a; 核心功能 短信服务&#xff08;SMS&#xff09;&#xff1a;允许用户通过API发送和接收短信&#xff0c;支…

VSCode详细安装步骤,适用于 Windows/macOS/Linux 系统

以下是 Visual Studio Code (VSCode) 的详细安装步骤&#xff0c;适用于 Windows/macOS/Linux 系统&#xff1a; VSCode 的详细安装步骤 一、Windows 系统安装1. 下载安装包2. 运行安装程序3. 验证安装 二、macOS 系统安装1. 方法一&#xff1a;官网下载安装包2. 方法二&#x…

基于PyTorch的深度学习3——基于autograd的反向传播

反向传播&#xff0c;可以理解为函数关系的反向传播。

设备管理系统功能与.NET+VUE(IVIEW)技术实现

在现代工业和商业环境中&#xff0c;设备管理系统&#xff08;Equipment Management System&#xff0c;简称EMS&#xff09;是确保设备高效运行和维护的关键工具。本文采用多租户设计的设备管理系统&#xff0c;基于.NET后端和VUE前端&#xff08;使用IVIEW UI框架&#xff09…

PHP之特性

在你有别的编程语言的基础下&#xff0c;你想学习PHP&#xff0c;可能要了解的PHP特有的东西。 定界符 使用<<<TT(可以是任意字符&#xff0c;但是不可以在别的地方使用过)和TT&#xff0c;会解析html格式和变量&#xff0c;如果在<<<后面加上单引号就会不…

9-Agent大模型中工作流的使用方法分析

目录 关键词 摘要 速览 配置插件进行新闻内容查找的工作流设置 自动化调用用户输入变量的插件配置教程 配置大模型以整理并简要输出新闻内容 新闻内容总结功能调试与优化 搭建与发布工作流优化布局的流程详解 创建和配置智能体工作流程 调试页面与工作流配置演示 思…

记一次:泛微OA集成Mybatis后 insert/update执行成功,但未真正插入或修改数据

背景&#xff1a;通过Mybatis插入数据或更新数据&#xff0c;显示插入/更新成功&#xff0c;查询数据库&#xff0c;发现并未插入成功、数据也没更新成功。下面是Mapper文件 public interface TestOrmMapper {int insertByTest(Param("requestId") Integer requestI…

使用 Spring Boot 实现前后端分离的海康威视 SDK 视频监控

使用 Spring Boot 实现前后端分离的海康威视 SDK 视频监控系统&#xff0c;可以分为以下几个步骤&#xff1a; 1. 系统架构设计 前端&#xff1a;使用 Vue.js、React 或 Angular 等前端框架实现用户界面。后端&#xff1a;使用 Spring Boot 提供 RESTful API&#xff0c;负责与…

【大模型系列篇】国产开源大模型DeepSeek-V3技术报告解析

DeepSeek-V3技术报告 目录 DeepSeek-V3技术报告 1. 摘要 2. 引言 3. DeepSeek V3 架构 3.1 基础架构 3.1.1. 多头潜在注意力 3.1.2. DeepSeekMoE和无辅助损失的负载均衡 3.2 多令牌预测 4. 基础设施 4.1 计算集群 4.2 训练框架 4.2.1. DualPipe算法与计算通信协同优…