Pytorch中的主要函数

目录

  • 一、torch.manual_seed(seed)
  • 二、torch.cuda.manual_seed(seed)
  • 三、torch.rand(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
  • 四、给大家写一个常用的自动选择电脑cuda 或者cpu 的小技巧
  • 五、torch.version.cuda;torch.backends.cudnn.version();打印cuda、cudnn版本
  • 六、torch.autograd.grad()自动求梯度

我就基本的解释一下吧,!

一、torch.manual_seed(seed)

功能: 用于手动设置 PyTorch 的随机数生成器的种子。当你设置了一个特定的种子后,后续所有依赖随机数生成的操作都会产生可重复的结果。
参数: seed 是一个整数,取值范围通常是 32 位整数范围(-2147483648 到 2147483647)。

示例代码如下:

import torch# 设置随机种子
torch.manual_seed(42)
# 生成随机张量
tensor1 = torch.randn(2, 2)
print(tensor1)# 再次设置相同的种子
torch.manual_seed(42)
tensor2 = torch.randn(2, 2)
print(tensor2)# 验证两次生成的张量是否相同
print(torch.allclose(tensor1, tensor2))  # 输出 True

运行结果如下图:
在这里插入图片描述
(一般还有个torch.seed()但是被弃用了,因为每次都是随机的结果,在科研啥的,一般都手动指定随机数种子,)

先解释一下,什么是随机数种子:
PyTorch 中随机数种子的作用原理
随机数种子就像是随机数生成器的起始状态标识。在 PyTorch 里,随机数生成器是基于特定的算法(如 Mersenne Twister 算法)来工作的。当你设置一个随机数种子时,实际上是将随机数生成器初始化为一个特定的状态。

从这个特定状态开始,随机数生成器会按照固定的算法规则生成一系列随机数。只要种子不变,每次从这个状态开始生成的随机数序列都是相同的。这就保证了在相同的代码和相同的种子设置下,每次运行代码时,所有依赖随机数生成的操作(如初始化模型权重、打乱数据集等)都会产生相同的结果,从而实现实验的可重复性。

例如,在神经网络训练中,我们通常会随机初始化模型的权重。如果不设置随机数种子,每次运行代码时权重的初始化值都不同,那么模型的训练结果也会有差异,不利于实验结果的对比和分析。而通过设置固定的随机数种子,我们可以确保每次运行代码时模型的初始权重是相同的,这样就可以更准确地评估不同训练参数或方法对模型性能的影响。

二、torch.cuda.manual_seed(seed)

功能: 专门为 CUDA 设备(即 GPU)设置随机数种子。如果你的代码在 GPU 上运行,使用这个函数可以确保在 GPU 上的随机操作具有可重复性。
参数: seed 同样是一个整数。

import torchif torch.cuda.is_available():# 为 CUDA 设备设置随机种子torch.cuda.manual_seed(42)# 在 GPU 上生成随机张量device = torch.device("cuda")tensor = torch.randn(2, 2).to(device)print(tensor)

在这里插入图片描述
注意:没有CUDA的就别跑了,会报错的。

三、torch.rand(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

功能: 生成指定形状的服从均匀分布的随机数张量,取值范围是 [0, 1)。
参数:
*size: 张量的形状,例如 (2, 3) 表示生成一个 2 行 3 列的张量。
out: 可选参数,用于指定输出张量。
dtype: 张量的数据类型。
layout: 张量的布局,一般使用默认的 torch.strided。
device: 张量存储的设备,如 ‘cpu’ 或 ‘cuda’。
requires_grad: 是否需要计算梯度。

import torch# 生成一个 2 行 3 列的随机张量
random_tensor = torch.rand(2, 3)
print(random_tensor)

示例结果:
在这里插入图片描述

四、给大家写一个常用的自动选择电脑cuda 或者cpu 的小技巧

import torch# 判断 CUDA 是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

在这里插入图片描述

五、torch.version.cuda;torch.backends.cudnn.version();打印cuda、cudnn版本

import torch# 判断 CUDA 是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(f"Using device: {device}")print(torch.cuda.is_available()) #查看是否有cuda
print(torch.backends.cudnn.is_available()) #查看是否有cudnn
print(torch.version.cuda) #打印cuda的版本
print(torch.backends.cudnn.version()) #打印cudnn的版本

我的运行结果如下:
在这里插入图片描述
大家如果有安装环境有问题的也可以私信我哦~

六、torch.autograd.grad()自动求梯度

torch.autograd.grad()用于求取梯度;
函数原型:
torch.autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False, only_inputs=True, allow_unused=False)

outputs:
类型:Tensor 或 Tensor 列表
描述:目标张量,即需要计算梯度的张量。
inputs:
类型:Tensor 或 Tensor 列表
描述:输入张量,用于计算梯度的张量。
grad_outputs(可选):
类型:Tensor 或 Tensor 列表
描述:目标张量对应的梯度。如果outputs 是一个标量,则 grad_outputs 不需要指定;如果 outputs 是一个张量或张量列表,需要指定 grad_outputs 的形状与之对应。
retain_graph(可选,默认值:None):
类型:布尔值
描述:是否保留计算图。在默认情况下,计算图在反向传播后会被释放以节省内存。如果需要多次反向传播同一个计算图,可以设置为 True。
create_graph(可选,默认值:False):
类型:布尔值
描述:是否创建新的计算图。如果设置为 True,梯度计算将被跟踪,生成的梯度张量将保留计算图,从而允许进行高阶导数的计算。
only_inputs(可选,默认值:True):
类型:布尔值
描述:是否只计算输入张量的梯度。如果设置为 True,仅输入张量的梯度会被计算。
allow_unused(可选,默认值:False):
类型:布尔值
描述:是否允许输入张量未被使用。如果某些输入张量未被 outputs 使用,并且没有被计算梯度,则会抛出错误。如果设置为 True,这些未使用的输入张量的梯度将返回为 None。
返回值
类型:Tensor 或 Tensor 列表
返回对应输入张量的梯度。

outputs:是你希望对其进行求导的标量

import torch# 创建两个张量,requires_grad=True 表示需要计算梯度
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = torch.tensor([4.0, 5.0, 6.0], requires_grad=True)# 定义一个函数 z = x * y
z = x * y# 使用 torch.autograd.grad() 计算梯度
grad_z_x = torch.autograd.grad(outputs=z, inputs=x, grad_outputs=torch.ones_like(z))print("梯度 dz/dx:", grad_z_x)

在这里插入图片描述


后面如果还有什么用到的,我会在这继续更新…ing!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/71380.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot中对接Twilio以实现发送验证码和验证短信码

Twilio介绍 Twilio是一家提供云通信服务的公司,旨在帮助开发者和企业通过简单的API实现各种通信功能。以下是Twilio的一些主要特点和服务介绍: 核心功能 短信服务(SMS):允许用户通过API发送和接收短信,支…

VSCode详细安装步骤,适用于 Windows/macOS/Linux 系统

以下是 Visual Studio Code (VSCode) 的详细安装步骤,适用于 Windows/macOS/Linux 系统: VSCode 的详细安装步骤 一、Windows 系统安装1. 下载安装包2. 运行安装程序3. 验证安装 二、macOS 系统安装1. 方法一:官网下载安装包2. 方法二&#x…

基于PyTorch的深度学习3——基于autograd的反向传播

反向传播,可以理解为函数关系的反向传播。

设备管理系统功能与.NET+VUE(IVIEW)技术实现

在现代工业和商业环境中,设备管理系统(Equipment Management System,简称EMS)是确保设备高效运行和维护的关键工具。本文采用多租户设计的设备管理系统,基于.NET后端和VUE前端(使用IVIEW UI框架&#xff09…

PHP之特性

在你有别的编程语言的基础下&#xff0c;你想学习PHP&#xff0c;可能要了解的PHP特有的东西。 定界符 使用<<<TT(可以是任意字符&#xff0c;但是不可以在别的地方使用过)和TT&#xff0c;会解析html格式和变量&#xff0c;如果在<<<后面加上单引号就会不…

9-Agent大模型中工作流的使用方法分析

目录 关键词 摘要 速览 配置插件进行新闻内容查找的工作流设置 自动化调用用户输入变量的插件配置教程 配置大模型以整理并简要输出新闻内容 新闻内容总结功能调试与优化 搭建与发布工作流优化布局的流程详解 创建和配置智能体工作流程 调试页面与工作流配置演示 思…

记一次:泛微OA集成Mybatis后 insert/update执行成功,但未真正插入或修改数据

背景&#xff1a;通过Mybatis插入数据或更新数据&#xff0c;显示插入/更新成功&#xff0c;查询数据库&#xff0c;发现并未插入成功、数据也没更新成功。下面是Mapper文件 public interface TestOrmMapper {int insertByTest(Param("requestId") Integer requestI…

使用 Spring Boot 实现前后端分离的海康威视 SDK 视频监控

使用 Spring Boot 实现前后端分离的海康威视 SDK 视频监控系统&#xff0c;可以分为以下几个步骤&#xff1a; 1. 系统架构设计 前端&#xff1a;使用 Vue.js、React 或 Angular 等前端框架实现用户界面。后端&#xff1a;使用 Spring Boot 提供 RESTful API&#xff0c;负责与…

【大模型系列篇】国产开源大模型DeepSeek-V3技术报告解析

DeepSeek-V3技术报告 目录 DeepSeek-V3技术报告 1. 摘要 2. 引言 3. DeepSeek V3 架构 3.1 基础架构 3.1.1. 多头潜在注意力 3.1.2. DeepSeekMoE和无辅助损失的负载均衡 3.2 多令牌预测 4. 基础设施 4.1 计算集群 4.2 训练框架 4.2.1. DualPipe算法与计算通信协同优…

负载均衡 - 一致性hash算法

构建场景 假如我们有三台缓存服务器编号node0、node1、node2&#xff0c;现在有3000万个key&#xff0c;希望可以将这些个key均匀的缓存到三台机器上&#xff0c;你会想到什么方案呢&#xff1f; 我们可能首先想到的方案&#xff0c;是取模算法hash&#xff08;key&#xff0…

pdfplumber 解析 PDF 表格的原理

&#x1f4cc; pdfplumber 解析 PDF 表格的原理 pdfplumber 处理表格的原理是基于几何分析&#xff08;geometric analysis&#xff09;&#xff0c;它通过分析 PDF 页面中的线条、单元格间距和文本分布&#xff0c;提取表格数据。它主要利用 垂直线&#xff08;vertical line…

洛谷P1334

题目如下 思路&#xff1a; 每次选择最短的两块木板进行合并&#xff0c;直到只剩下一块木板。使用最小堆&#xff08;优先队列&#xff09;来实现这一过程。使用最小堆&#xff1a; 将所有木板的长度放入最小堆&#xff08;优先队列&#xff09; 每次从堆中取出两块最短的木…

JVM(Java Virtual Machine,Java 虚拟机)的作用

JVM&#xff08;Java Virtual Machine&#xff0c;Java 虚拟机&#xff09;的作用至关重要&#xff0c;它是 Java 语言“一次编写&#xff0c;到处运行”&#xff08;Write Once, Run Anywhere&#xff0c;WORA&#xff09;特性的基石&#xff0c;也是 Java 平台的核心组成部分…

总结(尚硅谷Vue3入门到实战,最新版vue3+TypeScript前端开发教程)

1.Vue简介 2020年9月18日&#xff0c;Vue.js发布版3.0版本&#xff0c;代号&#xff1a;One Piece 1.1.性能的提升 打包大小减少41%。 初次渲染快55%, 更新渲染快133%。 内存减少54%。 1.2.源码的升级 使用Proxy代替defineProperty实现响应式。 重写虚拟DOM的实现和Tree-Shak…

SolidWorks 转 PDF3D 技术详解

在现代工程设计与制造流程中&#xff0c;不同软件间的数据交互与格式转换至关重要。将 SolidWorks 模型转换为 PDF3D 格式&#xff0c;能有效解决模型展示、数据共享以及跨平台协作等问题。本文将深入探讨 SolidWorks 转 PDF3D 的技术原理、操作流程及相关注意事项&#xff0c;…

【深度学习CV】【图像分类】从CNN(卷积神经网络)、ResNet迁移学习到GPU高效训练优化【案例代码】详解

摘要 本文分类使用的是resNet34,什么不用yolo v8&#xff0c;yolo v10系列,虽然他们也可以分类&#xff0c;因为yolo系列模型不纯粹&#xff0c;里面包含了目标检测的架构&#xff0c;所以分类使用的是resNet 本文详细介绍了三种不同的方法来训练卷积神经网络进行 CIFAR-10 图…

OPPO Find N5折叠手机:创新与实用的完美融合,FPC应用展现科技魅力【新立电子】

OPPO Find N5作为2025年新出世的折叠手机&#xff0c;以其卓越的设计、强大的性能以及创新的技术&#xff0c;为消费者带来了全新的使用体验。FPC&#xff08;柔性电路板&#xff09;在其中的运用&#xff0c;也进一步提升了手机的整体性能和用户体验。 OPPO Find N5的最大亮点…

【AD】PCB增加相关图层——以机械层为例

问题&#xff1a;图中PCB仅有机械层1和机械层2&#xff0c;想要在加一个机械层3 解决 1.点击视图—面板—View Configuration&#xff0c;选中机械层右键单击增加层&#xff0c;其他层类似

Qt5 C++ QMap使用总结

文章目录 功能解释代码使用案例代码解释注意事项代码例子参考 功能解释 QList<T> QMap::values() const Returns a list containing all the values in the map, in ascending order of their keys. If a key is associated with multiple values, all of its values wi…

测试用例总结

一、通用测试用例八要素   1、用例编号&#xff1b;    2、测试项目&#xff1b;   3、测试标题&#xff1b; 4、重要级别&#xff1b;    5、预置条件&#xff1b;    6、测试输入&#xff1b;    7、操作步骤&#xff1b;    8、预期输出 二、具体分析通…