LLaVA:开源多模态大语言模型深度解析

一、基本介绍

1.1 项目背景与定位

LLaVA(Large Language and Vision Assistant)是由Haotian Liu等人开发的开源多模态大语言模型,旨在实现GPT-4级别的视觉-语言交互能力。该项目通过视觉指令微调技术,将预训练的视觉编码器与语言模型深度融合,在多个多模态基准测试中达到SOTA水平。

核心特点

  • 支持336x336高分辨率图像处理
  • 兼容LLaMA、Vicuna、Mistral等多种基座模型
  • 提供4-bit/8-bit量化推理能力
  • 支持LoRA高效微调
  • 在单卡3090 GPU上即可完成训练

1.2 技术演进

  • v1.0 (2023/04):基础视觉指令微调框架
  • v1.5 (2023/10):引入MLP2x-GELU投影器,训练效率提升40%
  • v1.6 (2024/01):支持4倍分辨率提升,推理速度优化30%
  • NeXT系列 (2024/05):支持Llama3-8B和Qwen-72B大模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/905518.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何利用大模型对文章进行分段,提高向量搜索的准确性?

利用大模型对文章进行分段以提高向量搜索准确性,需结合文本语义理解、分块策略优化以及向量表示技术。以下是系统性的解决方案: 一、分块策略的核心原则 语义完整性优先 分块需确保每个文本单元在语义上独立且完整。研究表明,当分块内容保持单一主题时,向量嵌入的语义表征能…

Java高频面试之并发编程-17

volatile 和 synchronized 的区别 在 Java 并发编程中,volatile 和 synchronized 是两种常用的同步机制,但它们的适用场景和底层原理有显著差异。以下是两者的详细对比: 1. 核心功能对比 特性volatilesynchronized原子性不保证复合操作的原…

技术债务积累,如何进行有效管理

识别和评估技术债务、明确技术债务的优先级、制定系统的还债计划、持续监控与预防技术债务产生是有效管理技术债务积累的重要策略。其中尤其要注重识别和评估技术债务,只有准确识别技术债务的种类和严重程度,才能制定出高效且有针对性的解决方案&#xf…

安装windows版本的nacos

一、下载nacos安装包 浏览器搜索nacos,进入nacos官网 https://nacos.io/docs/latest/overview/ 选择下载windows版本的nacos 二、解压缩 三、进入bin目录,cmd命令行窗口 四、启动nacos 查看日志 五、打开可视化页面查看 以上,就是安装wind…

小结:Android系统架构

https://developer.android.com/topic/architecture?hlzh-cn Android系统的架构,分为四个主要层次:应用程序层、应用框架层、库和运行时层以及Linux内核层。: 1. 应用程序层(Applications) 功能:这一层包…

鸿蒙5.0项目开发——鸿蒙天气项目的实现(欢迎页)

【高心星出品】 文章目录 欢迎页面效果数据字典创建数据库表格Splash页面页面功能欢迎页代码亮点 项目按照从数据库连接层–视图层–业务逻辑层这种三层架构开发,所以先设计了数据库表格的结构,在EntryAbility中创建表格。 欢迎页面效果 数据字典 sear…

使用谱聚类将相似度矩阵分为2类

使用谱聚类将相似度矩阵分为2类的步骤如下: 构建相似度矩阵:提供的1717矩阵已满足对称性且对角线为1。 计算度矩阵:对每一行求和得到各节点的度,形成对角矩阵。 计算归一化拉普拉斯矩阵:采用对称归一化形式 LsymI−D…

MySQL 8.0 OCP 英文题库解析(三)

Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题16~25 试题16:…

【SQL】如何在 SQL 中统计结构化字符串的特征频率

在数据分析场景中,我们经常会遇到需要解析结构化字符串并统计特征出现次数的需求。本文将以常用数据库为例,探讨如何高效处理类似 [特征A][特征B][特征C] 格式的字符串数据,并实现特征频率统计。以下是完整的实现思路和解决方案。 一、问题场…

Docker Compose 的安装方法

以下是 Docker Compose 的安装方法整理,综合了多篇指南的推荐步骤和注意事项: 一、安装前准备 确保已安装 Docker Docker Compose 依赖 Docker 引擎运行,需先安装 Docker。若未安装,可通过以下命令一键安装(国内服…

配置Nginx解决http host头攻击漏洞【详细步骤】

前言 大概内容: 安全系统渗透测试出host头攻击漏洞,下面是解决步骤,本人已测过无问题。 server_name aaabbb.com; if ($http_Host !~* ^127.0.0.1|aaabbb.com|localhost$){return 403;}

自研时序大模型讲解(4月29日)直播回顾

4 月 29 日,清华团队揭秘:时序大模型如何让数据“活”起来线上直播圆满结束。清华大学软件学院博士生,IoTDB 原生机器学习引擎 AINode 研发同学刘雍在线上面向数千人次的时序数据分析人员与 AI 大模型行业关注者,就时序大模型的发…

attention_weights = torch.ones_like(prompt_embedding[:, :, 0]):切片操作获取第二维度,第三维度

attention_weights = torch.ones_like(prompt_embedding[:, :, 0]):切片操作获取第1 维度,第二维度 attention_weights = torch.ones_like(prompt_embedding[:, :, 0]) 这行代码的作用是创建一个与 prompt_embedding[:, :, 0] 形状相同且所有元素都为 1 的张量,它用于初始化…

鸿蒙Next API17新特性学习之如何使用新增鼠标轴事件

今天咱们接着学习鸿蒙开发文档API17版本的新特性——对鼠标轴事件的支持。这对于需要精细交互的应用来说是一个非常有用的特性,例如地图滚动、文档浏览等场景。本文将详细介绍在鸿蒙 Next 中如何使用新增的鼠标轴事件。 开发步骤 环境准备 在开始开发之前&#x…

【行为型之命令模式】游戏开发实战——Unity可撤销系统与高级输入管理的架构秘钥

文章目录 ⌨️ 命令模式(Command Pattern)深度解析一、模式本质与核心价值二、经典UML结构三、Unity实战代码(可撤销的建造系统)1. 定义命令接口与接收者2. 实现具体命令3. 命令管理器(Invoker)4. 客户端使…

计算机网络|| 路由器和交换机的配置

一、实验目的 1. 了解路由器和交换机的工作模式和使用方法; 2. 熟悉 Cisco 网络设备的基本配置命令; 3. 掌握 Cisco 路由器的基本配置方式及配置命令; 4. 掌握路由器和交换机的基本配置与管理方法。 二、实验环境 1. 运行 Windows 操作…

面试--HTML

1.src和href的区别 总结来说&#xff1a; <font style"color:rgb(238, 39, 70);background-color:rgb(249, 241, 219);">src</font>用于替换当前元素&#xff0c;指向的资源会嵌入到文档中&#xff0c;例如脚本、图像、框架等。<font style"co…

CVPR2025 | Prompt-CAM: 让视觉 Transformer 可解释以进行细粒度分析

Prompt-CAM: Making Vision Transformers Interpretable for Fine-Grained Analysis 摘要-Abstract引言-Introduction方法-Approach预备知识-PreliminariesPrompt-CAM: Prompt Class Attention Map特征识别与定位-Trait Identification and Localization变体与扩展-Variants an…

动态规划问题 -- 多状态模型(粉刷房子)

目录 动态规划分析问题五步曲题目概述代码编写 动态规划分析问题五步曲 不清楚动态规划分析问题是哪关键的五步的少年们可以移步到 链接: 动态规划算法基础 这篇文章非常详细的介绍了动态规划算法是如何分析和解决问题的 题目概述 链接: 粉刷房子 状态表示&#xff08;题目要求…

Spring Boot 注解详细解析:解锁高效开发的密钥

一、引言 Spring Boot 以其快速开发、自动配置等特性&#xff0c;成为构建 Java 应用程序的热门框架。而注解在 Spring Boot 中扮演着至关重要的角色&#xff0c;它们如同魔法指令&#xff0c;简化了配置流程&#xff0c;增强了代码的可读性与可维护性。本文将深入剖析 Spring…