【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战

目录

一、引言

二、模型简介

2.1 Gemma2概述

2.2 Gemma2 模型架构

三、训练与推理

3.1 Gemma2 模型训练

3.1.1 下载基座模型

3.1.2  导入依赖库

3.1.3 量化配置

3.1.4 分词器和模型实例化

3.1.5 引入PEFT进行LORA配置

 3.1.6 样本数据清洗与加载

3.1.7 模型训练与保存

3.1.8 完整训练代码 

3.1.9 启动训练以及收敛过程 

3.1.10 训练显存占用  

3.2 Gemma2 基座与微调模型合并推理

3.2.1 导入库

3.2.2 导入基座模型

3.2.3 合并基座模型与微调模型

3.2.4 基于对话模版进行对话生成

 3.2.5 推理显存占用

3.2.6 推理效果

3.2.7 微调与推理完整代码

四、总结


一、引言

Gemma 是 Google 推出的轻量级、先进的开放模型系列,采用与 Gemini 模型相同的研究成果和技术构建而成。它们是仅使用解码器的文本到文本大型语言模型(提供英语版本),为预训练变体和指令调整变体具有开放权重。Gemma 模型非常适合各种文本生成任务,包括问题解答、摘要和推理。由于它们相对较小,因此可以将其部署在资源有限的环境(如笔记本电脑、桌面设备或您自己的云基础架构)中,让更多人能够使用先进的 AI 模型,并帮助促进每个人的创新。

二、模型简介

2.1 Gemma2概述

Gemma2与他的上一代Gemma以及Qwen2等均采用decoder-only网络结构,主要参数情况如下:

与Gemma相同点: 

  • 上下文长度为 8192 个 token
  • 使用旋转位置嵌入(RoPE)
  • 近似 GeGLU 非线性

与Gemma不同点:

  • 局部滑动窗口和全局注意力。研究团队在每隔一层中交替使用局部滑动窗口注意力和全局注意力。局部注意力层的滑动窗口大小设置为4096个token,而全局注意力层的跨度设置为8192个token。
  • Logit软封顶。根据Gemini 1.5的方法,研究团队在每个注意力层和最终层限制logit,使得logit的值保持在−soft_cap和+soft_cap之间。
  • 对于9B和27B模型,研究团队将注意力对数封顶设置为50.0,最终对数封顶设置为30.0。截至本文发表时,注意力logit软封顶与常见的FlashAttention实现不兼容,因此他们已从使用FlashAttention的库中移除了此功能。研究团队对模型生成进行了有无注意力logit软封顶的消融实验,发现大多数预训练和后期评估中,生成质量几乎不受影响。本文中的所有评估均使用包含注意力logit软封顶的完整模型架构。然而,某些下游性能可能仍会受到此移除的轻微影响。
  • 使用RMSNorm进行post-norm 和pre-norm。为了稳定训练,研究团队使用RMSNorm对每个变换子层、注意力层和前馈层的输入和输出进行归一化。
  • 分组查询注意力。27B和9B模型均使用GQA,num_groups = 2,基于消融实验表明在保持下游性能的同时提高了推理速度。 

 

分组查询注意力 (Grouped Query Attention) 是一种在大型语言模型中的多查询注意力 (MQA) 和多头注意力 (MHA) 之间进行插值的方法,它的目标是在保持 MQA 速度的同时实现 MHA 的质量 

 效果对比

Gemma2 9B模型在多个维度超过近尺寸的Llama3 8B,27B尺寸模型在多个评价标准下超过314B的Grok-1:

2.2 Gemma2 模型架构

通过AutoModelForCausalLM模型头查看模型结构:

Gemma2ForCausalLM((model): Gemma2Model((embed_tokens): Embedding(256000, 4608, padding_idx=0)(layers): ModuleList((0-45): 46 x Gemma2DecoderLayer((self_attn): Gemma2SdpaAttention((q_proj): Linear(in_features=4608, out_features=4096, bias=False)(k_proj): Linear(in_features=4608, out_features=2048, bias=False)(v_proj): Linear(in_features=4608, out_features=2048, bias=False)(o_proj): Linear(in_features=4096, out_features=4608, bias=False)(rotary_emb): Gemma2RotaryEmbedding())(mlp): Gemma2MLP((gate_proj): Linear(in_features=4608, out_features=36864, bias=False)(up_proj): Linear(in_features=4608, out_features=36864, bias=False)(down_proj): Linear(in_features=36864, out_features=4608, bias=False)(act_fn): PytorchGELUTanh())(input_layernorm): Gemma2RMSNorm()(post_attention_layernorm): Gemma2RMSNorm()(pre_feedforward_layernorm): Gemma2RMSNorm()(post_feedforward_layernorm): Gemma2RMSNorm()))(norm): Gemma2RMSNorm())(lm_head): Linear(in_features=4608, out_features=256000, bias=False)
)
  • 46层Gemma2DecoderLayer,每层包含1个自注意力层Gemma2SdpaAttention、1个mlp层Gemma2MLP
  • 使用RMSNorm进行post-norm 和pre-norm。为了稳定训练,研究团队使用RMSNorm对每个变换子层、注意力层和前馈层的输入和输出进行归一化

三、训练与推理

3.1 Gemma2 模型训练

在之前的文章中,我介绍过采用LlamaFactory的webui以及命令行进行模型训练,今天基于transformers库原生微调Gemma2。

3.1.1 下载基座模型

我们仍然秉承一贯的作风,为网络不稳定的同学提供了modelscope下载方案:

from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/gemma-2-27b-it')

3.1.2  导入依赖库

import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM,BitsAndBytesConfig

3.1.3 量化配置

quantization_config = BitsAndBytesConfig(load_in_4bit=True,  # 或者 load_in_8bit=True,根据需要设置llm_int8_enable_fp32_cpu_offload=True,bnb_4bit_compute_dtype=torch.bfloat16,#虽然我们以4位加载和存储模型,但我们在需要时会部分反量化他,并以16位精度进行计算bnb_4bit_quant_type="nf4",#nf量化类型bnb_4bit_use_double_quant=True,#双重量化,量化一次后再量化,进一步解决显存
)

3.1.4 分词器和模型实例化

tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir,trust_remote_code=True, device_map=device,torch_dtype=torch.bfloat16,quantization_config=quantization_config,attn_implementation='eager')
model.gradient_checkpointing_enable

3.1.5 引入PEFT进行LORA配置

from peft import LoraConfig,get_peft_model,prepare_model_for_kbit_trainingmodel = prepare_model_for_kbit_training(model)config = LoraConfig(r=32,lora_alpha=16,target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"],lora_dropout=0.05,bias="none",task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)

 3.1.6 样本数据清洗与加载

from datasets import load_dataset,load_from_disk
data = load_dataset('json',data_files="./quotes.jsonl")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
print(data)

3.1.7 模型训练与保存

trainer = transformers.Trainer(model=model,train_dataset=data["train"],args=transformers.TrainingArguments(per_device_train_batch_size=1,gradient_accumulation_steps=4,warmup_steps=10,max_steps=50,learning_rate=3e-4,fp16=True,logging_steps=1,output_dir="outputs/checkpoint-1"+time_str,optim="paged_adamw_8bit",save_strategy = 'steps',save_steps = 10,),data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)model.config.use_cache = False  # silence the warnings. Please re-enable for inference!
trainer.train()trainer.save_model(trainer.args.output_dir)

注意:

  • per_device_train_batch_size=1:开始设置为4会出现'grad_norm': nan,'learning_rate':0的情况。

3.1.8 完整训练代码 

from datetime import datetime
now = datetime.now()
time_str = now.strftime('%Y-%m-%d %H:%M:%S')
print(time_str)#0,download model
from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/gemma-2-27b-it')
#model_dir = snapshot_download('qwen/Qwen2-7B-Instruct')
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM,BitsAndBytesConfigdevice = "auto"quantization_config = BitsAndBytesConfig(load_in_4bit=True,  # 或者 load_in_8bit=True,根据需要设置llm_int8_enable_fp32_cpu_offload=True,bnb_4bit_compute_dtype=torch.bfloat16,#虽然我们以4位加载和存储模型,但我们在需要时会部分反量化他,并以16位精度进行计算bnb_4bit_quant_type="nf4",#nf量化类型bnb_4bit_use_double_quant=True,#双重量化,量化一次后再量化,进一步解决显存
)
tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir,trust_remote_code=True, device_map=device,torch_dtype=torch.bfloat16,quantization_config=quantization_config,attn_implementation='eager')
model.gradient_checkpointing_enablefrom peft import LoraConfig,get_peft_model,prepare_model_for_kbit_trainingmodel = prepare_model_for_kbit_training(model)config = LoraConfig(r=32,lora_alpha=16,target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"],lora_dropout=0.05,bias="none",task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)from datasets import load_dataset,load_from_disk
data = load_dataset('json',data_files="./quotes.jsonl")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
print(data)trainer = transformers.Trainer(model=model,train_dataset=data["train"],args=transformers.TrainingArguments(per_device_train_batch_size=1,gradient_accumulation_steps=4,warmup_steps=10,max_steps=50,learning_rate=3e-4,fp16=True,logging_steps=1,output_dir="outputs/checkpoint-1"+time_str,optim="paged_adamw_8bit",save_strategy = 'steps',save_steps = 10,),data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)model.config.use_cache = False  # silence the warnings. Please re-enable for inference!
trainer.train()trainer.save_model(trainer.args.output_dir)

3.1.9 启动训练以及收敛过程 

采用CUDA_VISIBLE_DEVICES=1,2,3  python gemma2_train.py 启动 

3.1.10 训练显存占用  

3张显卡启动:针对27B尺寸模型进行int4位微调,占用显存约28.9G。如果bf16微调,大约需要54G。相比于LLama3、Qwen2等72B尺寸模型的优势就是仅消耗单卡A100即可bf16微调训练。

3.2 Gemma2 基座与微调模型合并推理

3.2.1 导入库

这里比较重要的是peft中的PeftModel和PeftConfig,PeftModel用于合并基座与微调模型,PeftConfig用于提取Peft微调模型的配置文件

import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

3.2.2 导入基座模型

peft_model_dir = trainer.args.output_dir
config = PeftConfig.from_pretrained(peft_model_dir)
print(config)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True,  device_map=device,torch_dtype=torch.float16, quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

3.2.3 合并基座模型与微调模型

model = PeftModel.from_pretrained(model, peft_model_dir)

3.2.4 基于对话模版进行对话生成

chat=[{"role": "user", "content": "详细介绍一下大语言模型,评价下与深度学习的差异"},
]prompt = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=True,return_tensors="pt").to(model.device)outputs = model.generate(prompt,max_length=2500)outputs = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(prompt, outputs)
]print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])

 3.2.5 推理显存占用

基座模型和微调模型合并后,大约需要40G??

3.2.6 推理效果

3.2.7 微调与推理完整代码

from datetime import datetime
now = datetime.now()
time_str = now.strftime('%Y-%m-%d %H:%M:%S')
print(time_str)#0,download model
from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/gemma-2-27b-it')
#model_dir = snapshot_download('qwen/Qwen2-7B-Instruct')
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM,BitsAndBytesConfigdevice = "auto"quantization_config = BitsAndBytesConfig(load_in_4bit=True,  # 或者 load_in_8bit=True,根据需要设置llm_int8_enable_fp32_cpu_offload=True,bnb_4bit_compute_dtype=torch.bfloat16,#虽然我们以4位加载和存储模型,但我们在需要时会部分反量化他,并以16位精度进行计算bnb_4bit_quant_type="nf4",#nf量化类型bnb_4bit_use_double_quant=True,#双重量化,量化一次后再量化,进一步解决显存
)
tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir,trust_remote_code=True, device_map=device,torch_dtype=torch.bfloat16,quantization_config=quantization_config,attn_implementation='eager')
model.gradient_checkpointing_enablefrom peft import LoraConfig,get_peft_model,prepare_model_for_kbit_trainingmodel = prepare_model_for_kbit_training(model)config = LoraConfig(r=32,lora_alpha=16,target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"],lora_dropout=0.05,bias="none",task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)from datasets import load_dataset,load_from_disk
data = load_dataset('json',data_files="./quotes.jsonl")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
print(data)trainer = transformers.Trainer(model=model,train_dataset=data["train"],args=transformers.TrainingArguments(per_device_train_batch_size=1,gradient_accumulation_steps=4,warmup_steps=10,max_steps=50,learning_rate=3e-4,fp16=True,logging_steps=1,output_dir="outputs/checkpoint-1"+time_str,optim="paged_adamw_8bit",save_strategy = 'steps',save_steps = 10,),data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)model.config.use_cache = False  # silence the warnings. Please re-enable for inference!
#trainer.train()trainer.save_model(trainer.args.output_dir)# merge model and inference
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer#peft_model_dir = trainer.args.output_dir
peft_model_dir = "/aigc_dev/gemma2/outputs/checkpoint-12024-07-04 21:57:45"
config = PeftConfig.from_pretrained(peft_model_dir)
print(config)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True,  device_map=device,torch_dtype=torch.bfloat16, quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_dir)chat=[{"role": "user", "content": "详细介绍一下大语言模型,评价下与深度学习的差异"},
]prompt = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=True,return_tensors="pt").to(model.device)outputs = model.generate(prompt,max_length=2500)outputs = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(prompt, outputs)
]print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])

四、总结

在模型结构上,Gemma2与Qwen2非常相似,除了decoder-only、RoPE、分组查询注意力机制等技术相同,线性层(Lora的目标层)均为

["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"]

中文对话效果上经过多个样例测试个人感觉不如国产的Qwen2、GLM4、DeepSeek等。

GOOGLE作为互联网技术老大哥,在大模型的角逐中,并没有那么强势。可叹啊!

感谢您的阅读,如果喜欢的话,期待您的三连+投票。

如果您还有时间,可以看看我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战

《AI—Transformers应用》

【AI大模型】Transformers大模型库(一):Tokenizer

【AI大模型】Transformers大模型库(二):AutoModelForCausalLM

【AI大模型】Transformers大模型库(三):特殊标记(special tokens)

【AI大模型】Transformers大模型库(四):AutoTokenizer 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/866219.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SCI一区TOP|徒步优化算法(HOA)原理及实现【免费获取Matlab代码】

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献5.代码获取 1.背景 2024年,SO Oladejo受到徒步旅行启发,提出了徒步优化算法(Hiking Optimization Algorithm, HOA)。 2.算法原理 2.1算法思想 HOA灵感来自于…

vue3 websocket连接上了,会自动断开的处理的二种方式

上了服务器以后,发现websocket会自动断开,那么我们可以有二种方法: 1)一般我们会发送心跳包 function sendMessagePing() {if (websocket && websocket.readyState WebSocket.OPEN) {websocket.send(ping);} else {con…

小试牛刀-Solana合约账户详解

目录 一.Solana 三.账户详解 3.1 程序账户 3.2 系统所有账户 3.3 程序派生账户(PDA) 3.4 Token账户 四、相关学习文档 五、在线编辑器 Welcome to Code Blocks blog 本篇文章主要介绍了 [Solana合约账户详解] ❤博主广交技术好友,喜欢文章的可以关注一下❤ …

【人工智能】--生成对抗网络

个人主页:欢迎来到 Papicatch的博客 课设专栏 :学生成绩管理系统 专业知识专栏: 专业知识 文章目录 🍉引言 🍉GAN 的基本原理 🍈生成器(Generator) 🍈判别器&…

sql语句练习注意点

1、时间可以进行排序,也可以用聚合函数对时间求最大值max(时间) 例如下面的例子:取最晚入职的人,那就是将入职时间倒序排序,然后limit 1 表: 场景:查找最晚入职员工的所有信息 se…

docker compose方式部署Zabbix 7.0 LTS

docker compose方式部署 Zabbix 7.0 LTS Zabbix 由几个主要的功能组件组成 zabbix-server 是 Zabbix agent 向其报告可用性、系统完整性信息和统计信息的核心组件。zabbix-agent 部署在被监控目标上,用于主动监控本地资源和应用程序,并将收集的数据发送…

Miniconda安装教程

文章目录 Conda和Miniconda的区别一、安装 Miniconda 1、创建目录2、下载 Miniconda(Python3 版本)3、安装 Miniconda4、取消默认进入conda(base)环境5、配置 conda 国内镜像 二、创建 Python3.8 环境 1、创建指令2、激活 py38 环…

Pinia:Vue 2 和 Vue 3 中更好用的状态管理框架

前言 还在用Vuex? 在Vue应用程序的开发过程中,高效且易于维护的状态管理一直是开发者关注的核心问题之一。随着Vue 3的发布,状态管理领域迎来了一位新星——Pinia,它不仅为Vue 3量身打造,同时也向下兼容Vue 2,以其简…

ios调用高德地图定位报错

错误信息如下: Thread Performance Checker: Thread running at User-interactive quality-of-service class waiting on a lower QoS thread running at Default quality-of-service class. Investigate ways to avoid priority inversions PID: 1668, TID: 1538…

PostgreSQL 在Windows下保姆级图文安装教程

😎 作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。 🤓 同时欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习、深…

The Plant Cell:DAP-seq技术助力揭示MdWRKY75调控苹果耐热性的分子机制

2024年6月12日,西北农林科技大学作物抗逆与高效生产全国重点实验室/园艺学院苹果抗逆与品质改良创新团队马锋旺教授/李超课题组在植物学知名期刊The Plant Cell(影响因子10)在线发表了题为“The MdHSC70-MdWRKY75 module mediates basal appl…

定个小目标之刷LeetCode热题(35)

155. 最小栈 设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。 实现 MinStack 类: MinStack() 初始化堆栈对象。void push(int val) 将元素val推入堆栈。void pop() 删除堆栈顶部的元素。int top() 获取堆栈顶部的…

heapq.nlargest函数

函数解释 heapq.nlargest(n, iterable, keyNone) 该函数用于从可迭代对象iterable中返回前n个最大的元素。它的参数包括: n:要返回的最大元素的数量iterable:要从中查找最大元素的可迭代对象key:一个函数,用于从每个…

微信小程序 调色板

注意:是在uniapp中直接使用的一个color-picker插件,改一下格式即可在微信小程序的原生代码中使用 https://github.com/KirisakiAria/we-color-picker 这是插件的地址,使用的话先把这个插件下载下来,找到src,在项目创…

Python API构建TensorRT加速模型的步骤详解

先来一段摘抄自网上的TensorRT介绍: TensorRT是英伟达针对自家平台做的加速包,TensorRT主要做了这么两件事情,来提升模型的运行速度。 TensorRT支持INT8和FP16的计算。深度学习网络在训练时,通常使用 32 位或 16 位数据。Tensor…

九、函数的声明和定义

函数声明: 1. 告诉编译器有一个函数叫什么,参数是什么,返回类型是什么。但是具体是不是存在,函数 声明决定不了。 2. 函数的声明一般出现在函数的使用之前。要满足先声明后使用。 3. 函数的声明一般要放在头文件中的。 定义的函…

开发个人Ollama-WebUI--4 用户管理

开发个人Ollama-WebUI–4 用户管理 先看下我的目录结构,可以根据个人爱好,进行重构 |-- Dockerfile |-- LICENSE |-- common | |-- callmodel | | |-- gemma.go | | -- models.go | |-- consts | | |-- code.go | | |-- common.go…

股价持续低迷,业绩颓势不减,冀光恒难救平安银行?

文|新熔财经 作者|宏一 周一一上班,就听到旁边的同事感慨今年股市行情很不错,尤其是银行股,上半年累计上涨了17.02%,是涨幅最大的板块。 听到这里,我美滋滋地打开自己的账户,结…

如何使用PostgreSQL

要使用PostgreSQL,你可以按照以下步骤进行操作: 1. 安装PostgreSQL:根据你的操作系统,下载并安装相应版本的PostgreSQL。 2. 启动PostgreSQL服务器:安装完成后,你需要启动PostgreSQL服务器。在Windows上&…

spdlog一个非常好用的C++日志库(四): 源码分析之logger类

目录 1.简介 2.类图关系 3.logger数据成员 4.logger函数成员 4.1.构造与析构 4.1.1.构造函数 4.1.2.拷贝构造、移动构造 4.2.交换操作 4.3.log()记录日志消息 4.3.1.格式串 4.3.2.普通字符串 4.3.3.日志级别 4.3.4.宽字符支持 4.4.sink_it_:将log消息…