李沐66_使用注意力机制的seq2seq——自学笔记

加入注意力

1.编码器对每次词的输出作为key和value

2.解码器RNN对上一个词的输出是query

3.注意力的输出和下一个词的词嵌入合并进入RNN

一个带有Bahdanau注意力的循环神经网络编码器-解码器模型

总结

1.seq2seq通过隐状态在编码器和解码器中传递信息

2.注意力机制可以根据解码器RNN的输出来匹配到合适的编码器RNN的输出来更有效的传递信息。

pip install d2l==0.17.6  ### 很重要,不要下载错了,对于colab
import torch
from torch import nn
from d2l import torch as d2l

注意力解码器

AttentionDecoder类定义了带有注意力机制解码器的基本接口

class AttentionDecoder(d2l.Decoder):"""带有注意力机制解码器的基本接口"""def __init__(self, **kwargs):super(AttentionDecoder, self).__init__(**kwargs)@propertydef attention_weights(self):raise NotImplementedError

Seq2SeqAttentionDecoder类中 实现带有Bahdanau注意力的循环神经网络解码器。

1.编码器在所有时间步的最终层隐状态,将作为注意力的键和值;

2.上一时间步的编码器全层隐状态,将作为初始化解码器的隐状态;

3.编码器有效长度(排除在注意力池中填充词元)。

class Seq2SeqAttentionDecoder(AttentionDecoder):def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,dropout=0, **kwargs):super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)self.attention = d2l.AdditiveAttention(num_hiddens,num_hiddens,num_hiddens, dropout)self.embedding = nn.Embedding(vocab_size, embed_size)self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers,dropout=dropout)self.dense = nn.Linear(num_hiddens, vocab_size)def init_state(self, enc_outputs, enc_valid_lens, *args):# outputs的形状为(batch_size,num_steps,num_hiddens).# hidden_state的形状为(num_layers,batch_size,num_hiddens)outputs, hidden_state = enc_outputsreturn (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)def forward(self, X, state):# enc_outputs的形状为(batch_size,num_steps,num_hiddens).# hidden_state的形状为(num_layers,batch_size,# num_hiddens)enc_outputs, hidden_state, enc_valid_lens = state# 输出X的形状为(num_steps,batch_size,embed_size)X = self.embedding(X).permute(1, 0, 2)outputs, self._attention_weights = [], []for x in X:# query的形状为(batch_size,1,num_hiddens)query = torch.unsqueeze(hidden_state[-1], dim=1)# context的形状为(batch_size,1,num_hiddens)context = self.attention(query, enc_outputs, enc_outputs, enc_valid_lens)# 在特征维度上连结x = torch.cat((context, torch.unsqueeze(x, dim=1)), dim=-1)# 将x变形为(1,batch_size,embed_size+num_hiddens)out, hidden_state = self.rnn(x.permute(1, 0, 2), hidden_state)outputs.append(out)self._attention_weights.append(self.attention.attention_weights)# 全连接层变换后,outputs的形状为# (num_steps,batch_size,vocab_size)outputs = self.dense(torch.cat(outputs, dim=0))return outputs.permute(1, 0, 2), [enc_outputs, hidden_state,enc_valid_lens]@propertydef attention_weights(self):return self._attention_weights

使用包含7个时间步的4个序列输入的小批量测试Bahdanau注意力解码器。

encoder = d2l.Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16,num_layers=2)
encoder.eval()
decoder = Seq2SeqAttentionDecoder(vocab_size=10, embed_size=8, num_hiddens=16,num_layers=2)
decoder.eval()
X = d2l.zeros((4, 7), dtype=torch.long)  # (batch_size,num_steps)
state = decoder.init_state(encoder(X), None)
output, state = decoder(X, state)
output.shape, len(state), state[0].shape, len(state[1]), state[1][0].shape
(torch.Size([4, 7, 10]), 3, torch.Size([4, 7, 16]), 2, torch.Size([4, 16]))

实例化一个带有Bahdanau注意力的编码器和解码器, 并对这个模型进行机器翻译训练。

embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 250, d2l.try_gpu()train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = d2l.Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
decoder = Seq2SeqAttentionDecoder(len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
net = d2l.EncoderDecoder(encoder, decoder)
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
loss 0.020, 7390.3 tokens/sec on cuda:0

在这里插入图片描述

模型训练后,我们用它将几个英语句子翻译成法语并计算它们的BLEU分数。

engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):translation, dec_attention_weight_seq = d2l.predict_seq2seq(net, eng, src_vocab, tgt_vocab, num_steps, device, True)print(f'{eng} => {translation}, ',f'bleu {d2l.bleu(translation, fra, k=2):.3f}')
go . => va !,  bleu 1.000
i lost . => j'ai perdu .,  bleu 1.000
he's calm . => il est mouillé .,  bleu 0.658
i'm home . => je suis chez moi .,  bleu 1.000
attention_weights = torch.cat([step[0][0][0] for step in dec_attention_weight_seq], 0).reshape((1, 1, -1, num_steps))

训练结束后,下面通过可视化注意力权重 会发现,每个查询都会在键值对上分配不同的权重,这说明 在每个解码步中,输入序列的不同部分被选择性地聚集在注意力池中。

# 加上一个包含序列结束词元
d2l.show_heatmaps(attention_weights[:, :, :, :len(engs[-1].split()) + 1].cpu(),xlabel='Key positions', ylabel='Query positions')

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/828873.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ELK技术介绍:背景、功能及应用场景全面解析

一、ELK概述 ELK是由Elasticsearch、Logstash和Kibana三个开源软件组成的日志管理解决方案,这一组合在近年来得到了广泛的关注和应用。ELK的出现,源于大数据和云计算技术的快速发展,以及对高效日志管理的迫切需求。 随着企业信息化程度…

【10-10-10旁观思维】项目管理必会的思维分析工具 08(送模板~)

👨‍💻👩‍💻面对一个决策或选择,当你犹豫不决时,可以想一下 ⏰10分钟后,自己是怎么看待自己现在的决策,依然保持一致亦或会后悔; ⏰10个月后,你又会如何思…

Javascript 插值搜索与二分搜索

插值搜索和二分搜索都是在有序数组中查找目标元素的算法。它们之间的核心区别在于确定中间元素的方式。 1、二分搜索(Binary Search):二分搜索是一种通过将目标值与数组中间元素进行比较,然后根据比较结果缩小搜索范围的算…

Docker资源管理-数据管理

一、CPU 资源控制: 1.cgroups: cgroups,是一个非常强大的linux内核工具,他不仅可以限制被 namespace 隔离起来的资源, 还可以为资源设置权重、计算使用量、操控进程启停等等。 所以 cgroups(Control grou…

深度剖析SSD掉电保护机制-1

随着固态硬盘(Solid State Drives, SSD)在数据中心、企业存储、个人计算设备等领域广泛应用,其数据安全性与可靠性成为至关重要的考量因素。其中,应对突发电源故障导致的数据丢失风险的掉电保护(Power Loss Protection…

MA-Chitosan MA甲基丙烯酸修饰羧甲基壳聚糖 MA-Chitosan

MA-Chitosan MA甲基丙烯酸修饰羧甲基壳聚糖 MA-Chitosan、 【中文名称】甲基丙烯酸化羧甲基壳聚糖 【英文名称】Chitosan-MA 【结 构】 【纯 度】95%以上 【保 存】-20℃ 【规 格】10mg,500mg,1g,5g,10g 【产品特性】 Chitosan-MA(壳聚糖-甲基丙烯酸…

Verilog基础语法——parameter、localparam与`define

Verilog基础语法——parameter、localparam与define 写在前面一、localparam二、parameter三、define写在最后 写在前面 在使用Verilog编写RTL代码时,如果需要定义一个常量,可以使用define、parameter和localparam三种进行定义与赋值。 一、localparam …

大模型都在用的:旋转位置编码

写在前面 这篇文章提到了绝对位置编码和相对位置编码,但是他们都有局限性,比如绝对位置编码不能直接表征token的相对位置关系;相对位置编码过于复杂,影响效率。于是诞生了一种用绝对位置编码的方式实现相对位置编码的编码方式——…

机器学习day1

一、人工智能三大概念 人工智能三大概念 人工智能(AI)、机器学习(ML)和深度学习(DL) 人工智能:人工智能是研究计算代理的合成和分析的领域。人工智能是使用计算机来模拟,而不是人类…

关于Android中的限定符

很多对于Android不了解或是刚接触Android的初学者来说,对于Android开发中出现的例如layout-large或者drawable-xxhdpi这样的文件夹赶到困惑,这这文件夹到底有什么用?什么时候用?这里简单的说一下。 其实,在上面例子中&…

基于OpenCV的人脸签到系统

效果图 目录文件 camerathread.h 功能实现全写在.h里了 class CameraThread : public QThread {Q_OBJECT public:CameraThread(){//打开序号为0的摄像头m_cap.open(0);if (!m_cap.isOpened()) {qDebug() << "Error: Cannot open camera";}//判断是否有文件,人脸…

iframe实现pdf预览,并使用pdf.js修改内嵌标题,解决乱码问题

项目中遇到文件预览功能,并且需要可以打印文件.下插件对于内网来说有点麻烦,正好iframe预览比较简单,且自带下载打印等功能按钮. 问题在于左上方的文件名乱码,网上找了一圈没有看到解决的,要么就是要收费要会员(ztmgs),要么直接说这东西改不了. 使用: 1.引入 PDF.js 库&…

Spring Boot集成Redisson实现延迟队列

项目场景&#xff1a; 在电商、支付等领域&#xff0c;往往会有这样的场景&#xff0c;用户下单后放弃支付了&#xff0c;那这笔订单会在指定的时间段后进行关闭操作&#xff0c;细心的你一定发现了像某宝、某东都有这样的逻辑&#xff0c;而且时间很准确&#xff0c;误差在1s内…

与AI对话:探索最佳国内可用的ChatGPT网站

与AI对话&#xff1a;探索最佳国内可用的ChatGPT网站 &#x1f310; 链接&#xff1a; GPTGod 点击可注册 &#x1f3f7;️ 标签&#xff1a; GPT-4 支持API 支持绘图 Claude &#x1f4dd; 简介&#xff1a;GPTGod 是一个功能全面的平台&#xff0c;提供GPT-4的强大功能&…

JavaEE——Spring Boot + jwt

目录 什么是Spring Boot jwt&#xff1f; 如何实现Spring Boot jwt&#xff1a; 1. 添加依赖 2、创建JWT工具类 3. 定义认证逻辑 4. 添加过滤器 5、 http请求测试 什么是Spring Boot jwt&#xff1f; Spring Boot和JWT&#xff08;JSON Web Token&#xff09;是一对常…

苍穹外卖学习

并不包含全部视频内容&#xff0c;大部分都按照操作文档来手搓代码&#xff0c;资料&#xff0c;代码都上传git。 〇、实际代码 0.1 Result封装 package com.sky.result;import lombok.Data;import java.io.Serializable;/*** 后端统一返回结果* param <T>*/ Data pub…

软考 系统架构设计师系列知识点之软件可靠性基础知识(5)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之软件可靠性基础知识&#xff08;4&#xff09; 所属章节&#xff1a; 第9章. 软件可靠性基础知识 第1节 软件可靠性基本概念 9.1.3 可靠性目标 前文定量分析软件的可靠性时&#xff0c;使用失效强度来表示软件缺陷对…

20232937文兆宇 2023-2024-2 《网络攻防实践》实践七报告

20232937文兆宇 2023-2024-2 《网络攻防实践》实践七报告 1.实践内容 &#xff08;1&#xff09;使用Metasploit进行Linux远程渗透攻击 任务&#xff1a;使用Metasploit渗透测试软件&#xff0c;攻击Linux靶机上的Samba服务Usermap_script安全漏洞&#xff0c;获取目标Linux…

机器学习day3

一、距离度量 1.欧氏距离 2.曼哈顿距离 3.切比雪夫距离 4.闵可夫斯基距离 二、特征与处理 1.数据归一化 数据归一化是一种将数据按比例缩放&#xff0c;使之落入一个小的特定区间的过程。 代码实战 运行结果 2.数据标准化 数据标准化是将数据按照其均值和标准差进行缩放的过…

2024新版计算机网络视频教程65集完整版(视频+配套资料)

今日学计算机网络&#xff0c;众生皆叹难理解。 却见老师神乎其技&#xff0c;网络通畅如云烟。 协议层次纷繁复杂&#xff0c;ARP、IP、TCP、UDP。 路由器交换机相连&#xff0c;数据包穿梭无限。 网络安全重于泰山&#xff0c;防火墙、加密都来添。 恶意攻击时刻存在&#xf…