1. 题目
给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')示例 2:
输入: word1 = "intention", word2 = "execution"
输出: 5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/edit-distance
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2. 解题
- 参考我的博客:编辑距离
类似题目:
LeetCode 编辑距离 II(DP)
LeetCode 583. 两个字符串的删除操作(动态规划)
LeetCode 712. 两个字符串的最小ASCII删除和(DP,类似编辑距离)
LeetCode 1143. 最长公共子序列(动态规划)
class Solution {
public:int minDistance(string w1, string w2) {int m = w1.size(), n = w2.size(), i, j;if(m==0 || n==0)return max(m,n);vector<vector<int>> dp(m,vector<int>(n,0));//填写第一行第一列for(j = 0; j < n; ++j){if(w1[0] == w2[j]) dp[0][j] = j;else if(j != 0) dp[0][j] = 1+dp[0][j-1];else dp[0][j] = 1;}for(i = 0; i < m; ++i){if(w1[i] == w2[0]) dp[i][0] = i;else if(i != 0) dp[i][0] = 1+dp[i-1][0];else dp[i][0] = 1;}//填写状态表for(i = 1; i < m; ++i){for(j = 1; j < n; ++j){if(w1[i] == w2[j])dp[i][j] = min(dp[i-1][j-1], min(1+dp[i-1][j],1+dp[i][j-1]));elsedp[i][j] = min(1+dp[i-1][j-1], min(1+dp[i-1][j],1+dp[i][j-1]));}}return dp[m-1][n-1];}
};
上面代码是从字符非空开始的。
or
下面代码是从空字符开始的,代码更精简。
class Solution {
public:int minDistance(string word1, string word2) {int n1 = word1.size(), n2 = word2.size(), i, j;if(n1==0 || n2==0) return max(n1,n2);int dp[n1+1][n2+1];// 边界状态初始化for(i = 0; i < n1+1; i++)dp[i][0] = i;for(j = 0; j < n2+1; j++)dp[0][j] = j;// DPint left, up, left_up;for(i = 1; i < n1+1; i++) {for(j = 1; j < n2+1; j++) {left = dp[i-1][j];up = dp[i][j-1];left_up = dp[i-1][j-1];if(word1[i-1] != word2[j-1]) dp[i][j] = 1 + min(left, min(up, left_up));else// word1[i-1] == word2[j-1]dp[i][j] = left_up;}}return dp[n1][n2];}
};
copy 官网的 py3 代码:
class Solution:def minDistance(self, word1: str, word2: str) -> int:n = len(word1)m = len(word2)# 有一个字符串为空串if n * m == 0:return n + m# DP 数组D = [ [0] * (m + 1) for _ in range(n + 1)]# 边界状态初始化for i in range(n + 1):D[i][0] = ifor j in range(m + 1):D[0][j] = j# 计算所有 DP 值for i in range(1, n + 1):for j in range(1, m + 1):left = D[i - 1][j] + 1down = D[i][j - 1] + 1left_down = D[i - 1][j - 1] if word1[i - 1] != word2[j - 1]:left_down += 1D[i][j] = min(left, down, left_down)return D[n][m]#作者:LeetCode-Solution
#链接:https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-by-leetcode-solution/
#来源:力扣(LeetCode)
#著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。