多层感知机
- 隐藏层
- 激活函数
- ReLU函数
- sigmoid函数
- tanh函数
- 多层感知机
- 小结
我们已经介绍了包括线性回归和softmax回归在内的单层神经网络。然而深度学习主要关注多层模型。在本节中,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。
隐藏层
多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。
在上图所示的多层感知机中,输入和输出个数分别为4和3,中间的隐藏层中包含了5个隐藏单元(hidden unit)。由于输入层不涉及计算,图中的多层感知机的层数为2。由上图可见,隐藏层中的神经元和输入层中各个输入完全连接,输出层中的神经元和隐藏层中的各个神经元也完全连接。因此,多层感知机中的隐藏层和输出层都是全连接层。
具体来说,给定一个小批量样本X∈Rn×d\boldsymbol{X} \in \mathbb{R}^{n \times d}X∈Rn×d,其批量大小为nnn,输入个数为ddd。假设多层感知机只有一个隐藏层,其中隐藏单元个数为hhh。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为H\boldsymbol{H}H,有H∈Rn×h\boldsymbol{H} \in \mathbb{R}^{n \times h}H∈Rn×h。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为Wh∈Rd×h\boldsymbol{W}_h \in \mathbb{R}^{d \times h}Wh∈Rd×h和 bh∈R1×h\boldsymbol{b}_h \in \mathbb{R}^{1 \times h}bh∈R1×h,输出层的权重和偏差参数分别为Wo∈Rh×q\boldsymbol{W}_o \in \mathbb{R}^{h \times q}Wo∈Rh×q和bo∈R1×q\boldsymbol{b}_o \in \mathbb{R}^{1 \times q}bo∈R1×q。
我们先来看一种含单隐藏层的多层感知机的设计。其输出O∈Rn×q\boldsymbol{O} \in \mathbb{R}^{n \times q}O∈Rn×q的计算为
H=XWh+bh,O=HWo+bo,\begin{aligned} \boldsymbol{H} &= \boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h,\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned} HO=XWh+bh,=HWo+bo,
也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到
O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo.\boldsymbol{O} = (\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h)\boldsymbol{W}_o + \boldsymbol{b}_o = \boldsymbol{X} \boldsymbol{W}_h\boldsymbol{W}_o + \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o. O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo.
从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为WhWo\boldsymbol{W}_h\boldsymbol{W}_oWhWo,偏差参数为bhWo+bo\boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_obhWo+bo。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。
另外,可以得出结论:
- 计算神经网络的层数时候不算输入层。
- 某一层的权重是指 前一层 到 该层 线性变换所需的权重参数。如输出层的权重为 隐藏层 到 输入层 的权重。
- 权重W的形状为 前一层神经元的个数 * 当前层的神经元的个数
激活函数
上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。
下面对比使用激活函数和不使用激活函数的神经网络模型表达能力:
结论:使用了激活函数的多层感知机可以表示任意函数。不加激活函数则无法表示非线性空间。
下面我们介绍几个常用的激活函数。
ReLU函数
ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素xxx,该函数定义为
ReLU(x)=max(x,0).\text{ReLU}(x) = \max(x, 0).ReLU(x)=max(x,0).
可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot
。
import torch
import numpy as np
import matplotlib.pylab as plt
import sysdef xyplot(x_vals, y_vals, name):d2l.set_figsize(figsize=(5, 2.5))d2l.plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy())d2l.plt.xlabel('x')d2l.plt.ylabel(name + '(x)')
我们接下来通过Tensor
提供的relu
函数来绘制ReLU函数。可以看到,该激活函数是一个两段线性函数。
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = x.relu()
xyplot(x, y, 'relu')
显然,当输入为负数时,ReLU函数的导数为0;当输入为正数时,ReLU函数的导数为1。尽管输入为0时ReLU函数不可导,但是我们可以取此处的导数为0。下面绘制ReLU函数的导数。
y.sum().backward()
xyplot(x, x.grad, 'grad of relu')
sigmoid函数
sigmoid函数可以将元素的值变换到0和1之间:
sigmoid(x)=11+exp(−x).\text{sigmoid}(x) = \frac{1}{1 + \exp(-x)}.sigmoid(x)=1+exp(−x)1.
sigmoid函数在早期的神经网络中较为普遍,但它目前逐渐被更简单的ReLU函数取代。在后面“循环神经网络”一章中我们会介绍如何利用它值域在0到1之间这一特性来控制信息在神经网络中的流动。下面绘制了sigmoid函数。当输入接近0时,sigmoid函数接近线性变换。
y = x.sigmoid()
xyplot(x, y, 'sigmoid')
依据链式法则,sigmoid函数的导数
sigmoid′(x)=sigmoid(x)(1−sigmoid(x)).\text{sigmoid}'(x) = \text{sigmoid}(x)\left(1-\text{sigmoid}(x)\right).sigmoid′(x)=sigmoid(x)(1−sigmoid(x)).
下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。
x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of sigmoid')
tanh函数
tanh(双曲正切)函数可以将元素的值变换到-1和1之间:
tanh(x)=1−exp(−2x)1+exp(−2x).\text{tanh}(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}.tanh(x)=1+exp(−2x)1−exp(−2x).
我们接着绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。
y = x.tanh()
xyplot(x, y, 'tanh')
依据链式法则,tanh函数的导数
tanh′(x)=1−tanh2(x).\text{tanh}'(x) = 1 - \text{tanh}^2(x).tanh′(x)=1−tanh2(x).
下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。
x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of tanh')
多层感知机
多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例并沿用本节之前定义的符号,多层感知机按以下方式计算输出:
H=ϕ(XWh+bh),O=HWo+bo,\begin{aligned} \boldsymbol{H} &= \phi(\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h),\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned} HO=ϕ(XWh+bh),=HWo+bo,
其中ϕ\phiϕ表示激活函数。在分类问题中,我们可以对输出O\boldsymbol{O}O做softmax运算,并使用softmax回归中的交叉熵损失函数。
在回归问题中,我们将输出层的输出个数设为1,并将输出O\boldsymbol{O}O直接提供给线性回归中使用的平方损失函数。
小结
- 多层感知机在输出层与输入层之间加入了一个或多个全连接隐藏层,并通过激活函数对隐藏层输出进行变换。
- 常用的激活函数包括ReLU函数、sigmoid函数和tanh函数。