正题
题目链接:https://www.luogu.com.cn/problem/P4173
题目大意
给出两个字符串S,TS,TS,T,其中包含小写字母和一些???,???可以匹配任何字符。
求有多少个ppp使得T0∼∣t∣−1=Sp∼p+∣t∣−1T_{0\sim |t|-1}=S_{p\sim p+|t|-1}T0∼∣t∣−1=Sp∼p+∣t∣−1
解题思路
如果不考虑???,我们可以用做差法来匹配两个字符,构造匹配函数
f(x)=∑i=0m(Ti−Sx+i)2f(x)=\sum_{i=0}^{m}(T_i-S_{x+i})^2f(x)=i=0∑m(Ti−Sx+i)2
这样若f(x)=0f(x)=0f(x)=0证明它们在位置xxx处匹配。
但是现在有???,也就是要跳过有???的位置,定义???的值为000,然后改一下匹配函数f(x)=∑i=0m(Ti−Sx+i)2TiSx+if(x)=\sum_{i=0}^{m}(T_i-S_{x+i})^2T_iS_{x+i}f(x)=i=0∑m(Ti−Sx+i)2TiSx+i
展开二次项f(x)=∑i=0mTi3Sx+i−2Ti2Sx+i2+TiSx+i3f(x)=\sum_{i=0}^{m}T_i^3S_{x+i}-2T_{i}^2S_{x+i}^2+T_iS_{x+i}^3f(x)=i=0∑mTi3Sx+i−2Ti2Sx+i2+TiSx+i3
把TTT反过来就是∑i=0mTm−i−13Sx+i−2Tm−i−12Sx+i2+Tm−i−1Sx+i3\sum_{i=0}^{m}T_{m-i-1}^3S_{x+i}-2T_{m-i-1}^2S_{x+i}^2+T_{m-i-1}S_{x+i}^3∑i=0mTm−i−13Sx+i−2Tm−i−12Sx+i2+Tm−i−1Sx+i3
然后有三个式子卷积之后加起来就好了。
常数极大,开-O2\text{-O2}-O2才能过。时间复杂度O(nlogn)O(n\log n)O(nlogn)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define int long long
using namespace std;
const int N=1e6+2e5;
const double Pi=acos(-1);
struct complex{double x,y;complex(double xx=0,double yy=0){x=xx;y=yy;return;}
};
complex operator+(complex a,complex b)
{return complex(a.x+b.x,a.y+b.y);}
complex operator-(complex a,complex b)
{return complex(a.x-b.x,a.y-b.y);}
complex operator*(complex a,complex b)
{return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
struct poly{complex a[N];
}F[3],G[3];
int n,m,r[N],k;
char s[N],t[N];
queue<int> q;
void FFT(complex *f,int op,int n){for(int i=0;i<n;i++)if(i<r[i])swap(f[i],f[r[i]]);for(int p=2;p<=n;p<<=1){int len=p>>1;complex tmp(cos(Pi/len),sin(Pi/len)*op);for(int k=0;k<n;k+=p){complex buf(1,0);for(int i=k;i<k+len;i++){complex tt=buf*f[i+len];f[i+len]=f[i]-tt;f[i]=f[i]+tt;buf=buf*tmp;}}}if(op==-1)for(int i=0;i<n;i++)f[i].x/=(double)n;return;
}
void mul(poly &a,poly &b){FFT(a.a,1,k);FFT(b.a,1,k);for(int i=0;i<k;i++)a.a[i]=a.a[i]*b.a[i];FFT(a.a,-1,k);return;
}
signed main()
{scanf("%d%d",&m,&n);scanf("%s",t);scanf("%s",s);for(int i=0;i<n;i++){char c=s[i];int z=s[i]-'a'+1;if(c=='*')z=0;F[0].a[i]=complex(z*z*z,0);F[1].a[i]=complex(z*z,0);F[2].a[i]=complex(z,0);}for(int i=0;i<m;i++){char c=t[m-i-1];int z=c-'a'+1;if(c=='*')z=0;G[0].a[i]=complex(z,0);G[1].a[i]=complex(z*z,0);G[2].a[i]=complex(z*z*z,0);}k=1;for(k=1;k<=2*n;)k<<=1;for(int i=0;i<k;i++)r[i]=(r[i>>1]>>1)|((i&1)?(k>>1):0);mul(F[0],G[0]);mul(F[1],G[1]);mul(F[2],G[2]);for(int i=0;i<k;i++)F[0].a[i].x=F[0].a[i].x-2.0*F[1].a[i].x+F[2].a[i].x;k=0;for(int i=0;i<=n-m;i++)if(fabs(F[0].a[i+m-1].x)<0.5)k++,q.push(i);printf("%d\n",k);while(!q.empty())printf("%d ",q.front()+1),q.pop();return 0;
}