定义
- 差分算子Δ\DeltaΔ:Δf(x)=f(x+1)−f(x)\Delta f(x)=f(x+1)-f(x)Δf(x)=f(x+1)−f(x)
- 平移算子EEE:Ef(x)=f(x+1)E f(x)=f(x+1)Ef(x)=f(x+1)
- 下降幂:n>0,{xn‾=x(x−1)(x−2)...(x−n+1)x−n‾=1(x+1)(x+2)(x+3)...(x+n)n>0,\begin{cases}x^{\underline{n}}=x(x-1)(x-2)...(x-n+1)\\x^{\underline{-n}}=\frac{1}{(x+1)(x+2)(x+3)...(x+n)}\end{cases}n>0,{xn=x(x−1)(x−2)...(x−n+1)x−n=(x+1)(x+2)(x+3)...(x+n)1
- 上升幂:n>0,{xn‾=x(x+1)(x+2)...(x+n−1)x−n‾=1(x−1)(x−2)(x−3)...(x−n)n>0,\begin{cases}x^{\overline{n}}=x(x+1)(x+2)...(x+n-1)\\x^{\overline{-n}}=\frac{1}{(x-1)(x-2)(x-3)...(x-n)}\end{cases}n>0,{xn=x(x+1)(x+2)...(x+n−1)x−n=(x−1)(x−2)(x−3)...(x−n)1
- 阶乘幂(下降幂和上升幂的统称)的简单性质:
- xa+b‾=xa‾(x−a)b‾x^{\underline{a+b}}=x^{\underline{a}}(x-a)^{\underline{b}}xa+b=xa(x−a)b
- xa+b‾=xa‾(x+a)b‾x^{\overline{a+b}}=x^{\overline{a}}(x+a)^{\overline{b}}xa+b=xa(x+a)b
- xn‾=(−1)n(−x)n‾x^{\underline{n}}=(-1)^n(-x)^{\overline{n}}xn=(−1)n(−x)n
- xn‾=(−1)n(−x)n‾x^{\overline{n}}=(-1)^n(-x)^{\underline{n}}xn=(−1)n(−x)n
- xk‾(x−12)k‾=(2x)2k‾22kx^{\underline{k}}(x-\frac{1}{2})^{\underline{k}}=\frac{(2x)^{\underline{2k}}}{2^{2k}}xk(x−21)k=22k(2x)2k
证明:xk‾(x−12)k‾=x(x−12)(x−1)(x−1−12)...(x−k+1)(x−k+1−12)=2−2k×2x(2x−1)(2x−2)(2x−3)...(2x−2k+2)(2x−2k+1)=(2x)2k‾22kx^{\underline{k}}(x-\frac{1}{2})^{\underline{k}}\\=x(x-\frac{1}{2})(x-1)(x-1-\frac{1}{2})...(x-k+1)(x-k+1-\frac{1}{2})\\=2^{-2k}\times 2x(2x-1)(2x-2)(2x-3)...(2x-2k+2)(2x-2k+1)\\=\frac{(2x)^{\underline{2k}}}{2^{2k}}xk(x−21)k=x(x−21)(x−1)(x−1−21)...(x−k+1)(x−k+1−21)=2−2k×2x(2x−1)(2x−2)(2x−3)...(2x−2k+2)(2x−2k+1)=22k(2x)2k - 当 nnn 是自然数时,有
(x+y)n‾=∑i=0n(ni)xi‾yn−i‾(x+y)^{\underline{n}}=\sum\limits_{i=0}^n\dbinom{n}{i}x^{\underline i}y^{\underline{n-i}}(x+y)n=i=0∑n(in)xiyn−i
(x+y)n‾=∑i=0n(ni)xi‾yn−i‾(x+y)^{\overline{n}}=\sum\limits_{i=0}^n\dbinom{n}{i}x^{\overline i}y^{\overline{n-i}}(x+y)n=i=0∑n(in)xiyn−i
有限微积分
-
Δ(xm‾)=mxm−1‾\Delta(x^{\underline{m}})=mx^{\underline{m-1}}Δ(xm)=mxm−1 (类比求导)
-
∑i=0n−1ik‾=nk+1‾k+1\sum_{i=0}^{n-1}i^{\underline{k}}=\frac{n^{\underline{k+1}}}{k+1}∑i=0n−1ik=k+1nk+1 (类比经典积分∫xk=xk+1k+1\int x^k=\frac{x^{k+1}}{k+1}∫xk=k+1xk+1)
特例:经典积分中k=−1k=-1k=−1时有特例∫1x=lnx\int \frac{1}{x}=\ln x∫x1=lnx,这里也有∑i=0n−1i−1‾=∑i=0n−11i+1=∑i=1n1i\sum_{i=0}^{n-1}i^{\underline{-1}}=\sum_{i=0}^{n-1}\frac{1}{i+1}=\sum_{i=1}^{n}\frac{1}{i}∑i=0n−1i−1=∑i=0n−1i+11=∑i=1ni1
(调和级数:∑i=0∞1i\sum_{i=0}^{\infty}\frac{1}{i}∑i=0∞i1) -
Δ(2x)=2x\Delta(2^x)=2^xΔ(2x)=2x (类比(ex)′=ex(e^x)\prime=e^x(ex)′=ex)
-
乘法法则:Δ(uv)=u⋅Δv+Ev⋅Δu\Delta(uv)=u\cdot\Delta v+Ev\cdot\Delta uΔ(uv)=u⋅Δv+Ev⋅Δu
-
分部积分法则:∑u⋅Δv=uv−∑Ev⋅Δu\sum u\cdot \Delta v=uv-\sum Ev\cdot \Delta u∑u⋅Δv=uv−∑Ev⋅Δu