大模型驱动的业务自动化

大模型输出token的速度太低且为统计输出,所以目前大模型主要应用在toP(人)的相关领域;但其智能方面的优势又是如此的强大,自然就需要尝试如何将其应用到更加广泛的toM(物理系统、生产系统)领域中来。

破题思路

笔者比较熟悉AI的符号主义分支,所以自然的就想到:由大模型完成业务知识的理解与转换,然后以通用的知识应用系统-专家系统来驱动实际的业务处理。

我们查看一个虚拟的业务处理过程:

某远程数据采集站点失联检查
启动条件:通过检查数据采集日志,发现某站点所有设备失连
1、等待半个小时
2、如果有设备未失连,则结束
3、检查站点的通信状态
4、如果该站点通信正常,推断该站点采集系统故障,申请采集设备检修并结束
5、如果该站点通信不正常,推断该站点通信故障,申请通信设备检修

通过观察,我们能看出:

1、这样一个业务处理过程首先可以映射为用petri网表达的流程化处理结构

2、petri网的每个库所,可以用一个产生式进行描述

3、产生式的前件与后件,都可以用谓词逻辑进行描述

需要说明的是:很多企业、很多领域,起始阶段未必有足够精细的业务知识满足量化计算的要求,所以还应当引入模糊推理来支持人的经验判断,以降低应用门槛

这些工具都具有完备且成熟的理论支撑,所以只要我们的实现能做到形式良好,即实现代码可靠、稳定,那么整个系统就是可靠的、稳定的、完备的。

这样一来,我们可以构造一个通用的业务驱动系统(以下简称GESLM),然后通过两步:

1、 用大模型将业务人员书写或口述的业务知识(目前主要考虑SOP型业务处理逻辑)转换为业务操作描述模型

2、程序员对大模型解析出来的部分谓词【和业务现场密切相关的专用谓词】编程实现

就完成了一个特定业务场景的业务自动化处理。

甚至,由于单一谓词的复杂度较低,在有了足够多样板的情况下,大模型的code分支还能直接生成所需谓词的实现代码:)

问题与难点

GESLM由于是通用的,所以最佳的实现方案是从头构建。但这显然相当于抛弃了现有的海量业务系统资产。因此,以第三方库或微服务的方式来逐步推进较为有利。

但此种路线由于是将之嵌入到现有成熟系统中,会有如下的问题与难点:

1、每个业务功能,都需要进行大量的适配工作

这种适配工作主要包括:

a 数据准备,要从原有系统中将业务场景所需要的数据提取出来馈送到GESLM中

b 名字映射,传统编程模式由于有多道开发工序,会逐步完成人所理解的具有业务意义的概念到业务代码中的变量名的逐步转换。但GESLM由于利用大模型省去了中间的开发工序,所以很难自动完成业务名称到既有代码变量名的转换,目前只能由程序员进行适配

c 信息补足,业务知识是业务人员书写或口述,其会下意识的忽略掉很多在他看起来是天经地义的背景知识。但缺了这些背景知识,GESLM根本无法正常执行。只能由知识工程师一点点的通过和业务人员的讨论进行识别并补足

d 例外处置,SOP只是一个正常情况下的操作步骤。当出现问题时,我们人是可以随机应变、具体问题具体分析的进行解决的。但机器不行。所以必须考虑到各种意外情况,以确保在出现意外时,能得到正确的处置

2、规则变换的手工核查

业务规则是由面向人的自然语言书写,但程序执行的必须是形式化的描述性语言,两种无法直接映射。所以在很多地方都必须进行大幅度的转换:

a 规则转换

如示例中大家一目了然的规则1【等待半个小时】,在程序处理时,要分解为如下的动作序列:

  • 启动一个定时器
  • 等待一个定时事件【为防止同时有多个定时器同时工作,所以还必须专名,以便于取消等操作时不会误操作】
  • 定时器半小时后超时,触发一个超时事件
  • 等待中的库所恢复执行

将这些动作进行合并后转换成计算机来执行的形式规则:

  • 一个启动定时器的规则
  • 一个等待超时事件的规则
  • 一个超时触发特定的超时事件的隐含规则

这种转换需要补足的知识过多,而大模型的不精确性就使得我们必须对本条这么简单的规则的转换结果都要进行手工的核查。

b 量词

我们都知道,谓词逻辑中有两个量词:全称量词、存在量词。对我们人来说,这两个量词很容易理解,但对计算机来说,一个量词其实是三个部件的合成:

  • 关系谓词,提取量词对应的所有目标对象
  • 判断谓词,对提取出的目标对象,在for循环中逐一进行判断
  • 逻辑连接,全称量词就是判断谓词的逻辑与,存在量词就是判断谓词的逻辑或

可想而知,需要补足这么多的信息也必须进行手工的核查甚至是纠正与调整才能确保转换后的模型能正常工作。

c 谓词调整

比如上面示例中的规则3【检查站点的通信状态】,在刚应用时,可能就是人去检查,然后手工送入检查结果。之后,随着应用的深入,就可能改为程序自动检测了。

人工检查,由于需要等待人的处理结果,所以其实是要等待一个外部事件。自动检测,则是调用一个同步函数来执行检测并读取到检测结果。

但是,这两种情况的不同,由于是在实现层次进行区分的,大模型根本无法感知到,所以只能由程序员或未来的知识工程师进行手动调整。

以上只是笔者目前所遇到的较为重要的问题与难点,相信随着需要面对的业务场景的增多,问题与难点还会不断涌现。

解决方略

在我看来,这些问题与难点分为三类:

1、准备工作量大

这类问题是由于我们所选择的嵌入式发展路线所导致。即必须解决从现有IT系统到GESLM的跨越问题。

这类问题有一个特点,就是初始工作量较大,但随着嵌入的业务功能、对接的既有系统越来越多,工作量与成本就会越来越少,最终趋于忽略不计。

2、积累不足

这是因为积累的样板太少,所以目前只能以prompt工程的方式让大模型来理解业务知识。如果积累足够多的样板,使用大模型进行微调,相应的问题自然就可以得以化解。

3、背景知识的欠缺

这一部分最为麻烦。因为这些需要补足的知识并不存在于业务方所提供的业务知识中,而是存在于业务人员的从业经历与经验教训中,属于隐藏知识,根本无法直接程序化自动提取。

所以,即便是拿出再多的样板来训练大模型,都无法解决这类问题。

这类问题的解决只能通过在更高层次上积累企业运行数据与知识、行业数据与知识来构建企业与行业大模型来提供背景知识的补足。

至于谓词调整这种因工程实施的阶段性而诱发的问题,归于工程实施来解决就好了。

结语

由于目前样板积累的太少,因此我在【将业务知识转换为业务模型】时采用的是prompt工程的方案来实现的。所以适配与核验的工作量会比较大。

相信随着专用大模型【起码需要六种大模型:业务知识转换大模型、语法语义校对大模型、自动化适配大模型、验证与测试大模型、UI大模型、bug分析大模型】的成熟,相应的准备性与维护性工作量会大幅度的下降。

这样一来,业务系统开发的工序与工种将大幅度缩减,很有可能,不,我坚信:大多数的业务系统在不远的将来只需要一个知识工程师在行业大模型的支持下就可以完成定制性的开发了!最多其再稍微兼职一下程序员就够了。

相应的开发时间与开发成本也自然会大幅度下降;同时,还更满足用户的需求、充分支持其独特的业务逻辑、增强其竞争力;更稳定、更可靠。

作为程序员,我将消灭我自己。我也不知道该配一个笑脸还是哭脸为好。

1、流程的描述性定义

jxTMS设计思想之流程引擎与任务分发

2、web界面的描述性定义

jxTMS设计思想之web界面

3、运用模糊数学引入人的经验来降低业务知识不精细时的应用门槛

模糊控制-模糊是什么鬼

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/70237.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode1299:将每个元素替换为右侧最大元素

题目描述: 给你一个数组 arr ,请你将每个元素用它右边最大的元素替换,如果是最后一个元素,用 -1 替换。 完成所有替换操作后,请你返回这个数组。 代码思路: 方法 replaceElements 输入参数:…

Java 大视界 -- 人才需求与培养:Java 大数据领域的职业发展路径(92)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…

Weboffice在线Word权限控制:限制编辑,只读、修订、禁止复制等

在现代企业办公中,文档编辑是一项常见且重要的任务。尤其是在线办公环境中,员工需要在网页中打开和编辑文档,但如何确保这些文档只能进行预览而无法被编辑或复制,成为许多企业面临的一个痛点。尤其是在处理涉密文档时,…

基于 Spring Boot 和微信小程序的仓储管理系统设计与实现

大家好,今天要和大家聊的是一款基于 Spring Boot 和 微信小程序 的“仓储管理系统”的设计与实现。项目源码以及部署相关事宜请联系我,文末附上联系方式。 项目简介 基于 Spring Boot 和 微信小程序 的“仓储管理系统”主要使用者分为 员工、供应商 和…

Stable Diffusion本地化部署超详细教程(手动+自动+整合包三种方式)

一、 Stable Diffusion简介 2022年作为AIGC(Artificial Intelligence GeneratedContent)时代的元年,各个领域的AIGC技术都有一个迅猛的发展,给工业界、学术界、投资界甚至竞赛界都注入了新的“[AI(https://so.csdn.net/so/search…

WPS的AI助手进化跟踪(灵犀+插件)

Ver V0.0 250216: 如何给WPS安装插件用以支持其他大模型LLM V0.1 250217: WPS的灵犀AI现在是DeepSeek R1(可能是全参数671B) 前言 WPS也有内置的AI,叫灵犀,之前应是自已的LLM模型,只能说是属于“能用,有好过无”,所…

通俗理解-L、-rpath和-rpath-link编译链接动态库

一、参考资料 链接选项 rpath 的应用和原理 | BewareMyPower的博客 使用 rpath 和 rpath-link 确保 samba-util 库正确链接-CSDN博客 编译参数-Wl和rpath的理解_-wl,-rpath-CSDN博客 Using LD, the GNU linker - Options Directory Options (Using the GNU Compiler Colle…

SpringMVC环境搭建

文章目录 1.模块创建1.创建一个webapp的maven项目2.目录结构 2.代码1.HomeController.java2.home.jsp3.applicationContext.xml Spring配置文件4.spring-mvc.xml SpringMVC配置文件5.web.xml 配置中央控制器以及Spring和SpringMVC配置文件的路径6.index.jsp 3.配置Tomcat1.配置…

window中git bash使用conda命令

window系统的终端cmd和linux不一样,运行不了.sh文件,为了在window中模仿linux,可以使用gui bash模拟linux的终端。为了在gui bash中使用python环境,由于python环境是在anaconda中创建的,所以需要在gui bash使用conda命…

在线考试系统(代码+数据库+LW)

摘 要 使用旧方法对在线考试系统的信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在在线考试系统的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。这次开发的在线考试…

c/c++蓝桥杯经典编程题100道(19)汉诺塔问题

汉诺塔问题 ->返回c/c蓝桥杯经典编程题100道-目录 目录 汉诺塔问题 一、题型解释 二、例题问题描述 三、C语言实现 解法1:递归法(难度★) 解法2:迭代法(难度★★★) 四、C实现 解法1&#xff1…

赶AI大潮:在VSCode中使用DeepSeek及近百种模型的极简方法

1 赶AI大潮:在VSCode中使用DeepSeek及近百种模型的极简方法 1.1 背景 DeepSeek在春节期间突然大行其道,欣喜国力大增的同时,对于普通IT工作者,如何才能享受这一波AI红利,让自己的工作更出彩呢?   很多人…

【一文读懂】HTTP与Websocket协议

HTTP协议 概述 HTTP (Hypertext Transfer Protocol),即超文本传输协议,是一种用于在客户端和服务器之间传输超文本(例如网页、图片、音频、视频等)的通信协议。它是万维网(WWW)的基础,负责在浏…

IDEA集成DeepSeek

引言 随着数据量的爆炸式增长,传统搜索技术已无法满足用户对精准、高效搜索的需求。 DeepSeek作为新一代智能搜索技术,凭借其强大的语义理解与深度学习能力,正在改变搜索领域的游戏规则。 对于 Java 开发者而言,将 DeepSeek 集成…

从零开始部署DeepSeek:基于Ollama+Flask的本地化AI对话系统

从零开始部署DeepSeek:基于OllamaFlask的本地化AI对话系统 一、部署背景与工具选型 在AI大模型遍地开花的2025年,DeepSeek R1凭借其出色的推理能力和开源特性成为开发者首选。本文将以零基础视角,通过以下工具链实现本地化部署: …

图论入门算法:拓扑排序(C++)

上文中我们了解了图的遍历(DFS/BFS), 本节我们来学习拓扑排序. 在图论中, 拓扑排序(Topological Sorting)是对一个有向无环图(Directed Acyclic Graph, DAG)的所有顶点进行排序的一种算法, 使得如果存在一条从顶点 u 到顶点 v 的有向边 (u, v) , 那么在排序后的序列中, u 一定…

第1章大型互联网公司的基础架构——1.2 客户端连接机房的技术1:DNS

客户端启动时要做的第一件事情就是通过互联网与机房建立连接,然后用户才可以在客户端与后台服务器进行网络通信。目前在计算机网络中应用较为广泛的网络通信协议是TCP/IP,它的通信基础是IP地址,因为IP地址有如下两个主要功能。 标识设备&…

全面解析鸿蒙(HarmonyOS)开发:从入门到实战,构建万物互联新时代

文章目录 引言 一、鸿蒙操作系统概述二、鸿蒙开发环境搭建三、鸿蒙核心开发技术1. **ArkUI框架**2. **分布式能力开发**3. **原子化服务与元服务** 四、实战案例:构建分布式音乐播放器五、鸿蒙开发工具与调试技巧六、鸿蒙生态与未来展望结语 引言 随着万物互联时代…

Android:播放Rtsp视频流的两种方式

一.SurfaceView Mediaplayer XML中添加SurfaceView: <SurfaceViewandroid:id"id/surface_view"android:layout_width"match_parent"android:layout_height"match_parent"/> Activity代码&#xff1a; package com.android.rtsp;impor…

Next.js【详解】CSS 样式方案

全局样式 Global CSS 默认已创建&#xff0c;即 src\app\globals.css&#xff0c;可根据需要修改 默认在全局布局中导入 src\app\layout.tsx import "./globals.css";组件样式 CSS Modules 新建文件 src\app\test\styles.module.css .red {color: red;}导入目标页面…