赶AI大潮:在VSCode中使用DeepSeek及近百种模型的极简方法

1 赶AI大潮:在VSCode中使用DeepSeek及近百种模型的极简方法

1.1 背景

  DeepSeek在春节期间突然大行其道,欣喜国力大增的同时,对于普通IT工作者,如何才能享受这一波AI红利,让自己的工作更出彩呢?
  很多人在大量的宣传攻势下都知道了DeepSeek官网,然而当大家兴冲冲的来到DeepSeek官网,随便提两个问题就得到了“服务器繁忙,请稍后再试。”的标准答案后,大家的积极性未免就大打折扣了!

  有没有途径既可以使用到DeepSeek大模型或其他AI模型,又没有经济负担呢?

  • 部署DeepSeek-R1本地模型?看看网上各博主介绍的硬件投资,应该足可以打消您的冲动!
  • 使用云AI算力平台前提是要找到足够经济的选择!

注:
为了在VSCode中使用到经济好用,甚至免费的AI算力,我们可以去硅基流动的模型市场上逛一圈。
硅基流动提供了两种选择:

  • 免费模型deepseek-ai/DeepSeek-R1-Distill-Llama-8BQwen/Qwen2.5-Coder-7B-Instruct等近30种可供选择。
  • 收费模型deepseek-ai/DeepSeek-R1deepseek-ai/DeepSeek-V3等近60种价格不一的选择。
    PS: 注册赠送2000万tokens可以薅很久DeekSeek模型。

1.2 准备过程

1.2.1 注册AI平台:进入AI的世界

在这里插入图片描述

1.2.2 在VSCode中安装Cline插件

在这里插入图片描述

1.3 配置cline

1.3.1 打开cline:在VSCode侧边栏上选择cline

如下图所示:
在这里插入图片描述

1.3.2 在cline中配置AI接口

  即配置准备工作中提到的AI平台。
  如果第1次打开cline,会自动弹出配置窗口, 如果第1次没有配置正确,找不到配置窗口,也不要紧,可以点击下图标识的位置:
在这里插入图片描述

配置界面如下
在这里插入图片描述

**参数说明 **:

  • API ProviderOpenAl Compatible
  • Base URL: https://api.siliconflow.cn/v1
  • API Key: 在硅基流动账号中拷贝API,并粘贴,如下图所示:
    在这里插入图片描述

Model ID:进入硅基流动的模型广场,可以筛选免费的模型,也可以使用其他收费模型(消耗赠送的tokens),如下所示:
在这里插入图片描述

在这里插入图片描述

注意:在模型广场选中模型后点击,在弹出页面单击复制模型名称。 免费模型中Qwen/Qwen2.5-Coder-7B-Instruct生成的速度比较快,如果使用DeepSeek的话,deepseek-ai/DeepSeek-V3速度还可以(高峰期也比较慢)。deepseek-ai/DeepSeek-R1在编写代码方面,输出速度不太让人满意。

1.4 在VSCode中使用DeepSeek

  前文已经将cline配置完毕,现在在VSCode中试一下给AI下发任务,看看效果如何。
  参考下图,给AI提出任务:
在这里插入图片描述

检查AI生成的脚本是否达到预期
在这里插入图片描述

注:第1个参数是生成文本行数,第2个参数是生成文本列数。
非常赞!完全达到了预期!!!没有消耗我一个脑细胞!


作者声明:本文用于记录和分享作者的学习心得,可能有部分文字或示例来自AI平台,如:豆包、DeepSeek(硅基流动)(注册链接)等,由于本人水平有限,难免存在表达错误,欢迎留言交流和指教!
Copyright © 2022~2025 All rights reserved.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/70225.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【一文读懂】HTTP与Websocket协议

HTTP协议 概述 HTTP (Hypertext Transfer Protocol),即超文本传输协议,是一种用于在客户端和服务器之间传输超文本(例如网页、图片、音频、视频等)的通信协议。它是万维网(WWW)的基础,负责在浏…

IDEA集成DeepSeek

引言 随着数据量的爆炸式增长,传统搜索技术已无法满足用户对精准、高效搜索的需求。 DeepSeek作为新一代智能搜索技术,凭借其强大的语义理解与深度学习能力,正在改变搜索领域的游戏规则。 对于 Java 开发者而言,将 DeepSeek 集成…

从零开始部署DeepSeek:基于Ollama+Flask的本地化AI对话系统

从零开始部署DeepSeek:基于OllamaFlask的本地化AI对话系统 一、部署背景与工具选型 在AI大模型遍地开花的2025年,DeepSeek R1凭借其出色的推理能力和开源特性成为开发者首选。本文将以零基础视角,通过以下工具链实现本地化部署: …

图论入门算法:拓扑排序(C++)

上文中我们了解了图的遍历(DFS/BFS), 本节我们来学习拓扑排序. 在图论中, 拓扑排序(Topological Sorting)是对一个有向无环图(Directed Acyclic Graph, DAG)的所有顶点进行排序的一种算法, 使得如果存在一条从顶点 u 到顶点 v 的有向边 (u, v) , 那么在排序后的序列中, u 一定…

第1章大型互联网公司的基础架构——1.2 客户端连接机房的技术1:DNS

客户端启动时要做的第一件事情就是通过互联网与机房建立连接,然后用户才可以在客户端与后台服务器进行网络通信。目前在计算机网络中应用较为广泛的网络通信协议是TCP/IP,它的通信基础是IP地址,因为IP地址有如下两个主要功能。 标识设备&…

全面解析鸿蒙(HarmonyOS)开发:从入门到实战,构建万物互联新时代

文章目录 引言 一、鸿蒙操作系统概述二、鸿蒙开发环境搭建三、鸿蒙核心开发技术1. **ArkUI框架**2. **分布式能力开发**3. **原子化服务与元服务** 四、实战案例:构建分布式音乐播放器五、鸿蒙开发工具与调试技巧六、鸿蒙生态与未来展望结语 引言 随着万物互联时代…

Android:播放Rtsp视频流的两种方式

一.SurfaceView Mediaplayer XML中添加SurfaceView: <SurfaceViewandroid:id"id/surface_view"android:layout_width"match_parent"android:layout_height"match_parent"/> Activity代码&#xff1a; package com.android.rtsp;impor…

Next.js【详解】CSS 样式方案

全局样式 Global CSS 默认已创建&#xff0c;即 src\app\globals.css&#xff0c;可根据需要修改 默认在全局布局中导入 src\app\layout.tsx import "./globals.css";组件样式 CSS Modules 新建文件 src\app\test\styles.module.css .red {color: red;}导入目标页面…

LVS相关原理

一、LVS集群的体系结构 1.1 LVS简介 LVS 是 Linux Virtual Server 的简称&#xff0c;也就是 Linux 虚拟服务器 , 是一个由章文嵩博士发起的自由软件项目&#xff0c;它的官方站点是 www.linuxvirtualserver.org 。现在 LVS 已经是 Linux标准内核的一部分&#xff0c;在Linux2…

【2025深度学习系列专栏大纲:深入探索与实践深度学习】

第一部分:深度学习基础篇 第1章:深度学习概览 1.1 深度学习的历史背景与发展轨迹 1.2 深度学习与机器学习、传统人工智能的区别与联系 1.3 深度学习的核心组件与概念解析 神经网络基础 激活函数的作用与类型 损失函数与优化算法的选择 1.4 深度学习框架简介与选择建议 第2…

Java与C语言中取模运算符%的区别对比

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: Java 文章目录 &#x1f4af;前言&#x1f4af;C语言中的取模运算符 %基本行为示例 注意事项示例&#xff1a;负数取模 &#x1f4af;Java中的取模运算符 %基本行为示例 对浮点数的支持示例&#xff1a;浮点数取模 符…

OpenCV机器学习(4)k-近邻算法(k-Nearest Neighbors, KNN)cv::ml::KNearest类

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::ml::KNearest 是 OpenCV 机器学习模块中的一部分&#xff0c;它提供了实现 k-近邻算法&#xff08;k-Nearest Neighbors, KNN&#xff09;的…

过于依赖chatgpt编程会有哪些弊端?

过于依赖ChatGPT编程可能会带来以下问题&#xff1a; 1. 基础不扎实&#xff0c;容易“变菜” 以前遇到代码还会琢磨哪里不懂、怎么改&#xff0c;现在直接复制粘贴&#xff0c;时间长了可能连基本的语法和逻辑都搞不清楚。就像考试总抄答案&#xff0c;真让你自己写的时候脑子…

红队视角出发的k8s敏感信息收集——Kubernetes API 扩展与未授权访问

针对 Kubernetes 第三方组件与 Operator 的详细攻击视角分析&#xff0c;涵盖 Service Mesh、Helm Releases 和 Database Operators 的潜在风险及利用方法。 攻击链示例 1. 攻击者通过未授权的 Tiller 服务部署恶意 Helm Chart → 2. 创建后门 Pod 并横向移动至 Istio 控制平…

3D与2D机器视觉机械臂引导的区别

3D与2D机器视觉在机械臂引导中的主要区别如下&#xff1a; 数据维度 2D视觉&#xff1a;仅处理平面图像&#xff0c;提供X、Y坐标信息&#xff0c;无法获取深度&#xff08;Z轴&#xff09;数据。 3D视觉&#xff1a;处理三维空间数据&#xff0c;提供X、Y、Z坐标及物体的姿态…

日常开发中,使用JSON.stringify来实现深拷贝的坑

使用JSON.stringify的方式来实现深拷贝的弊端 弊端一&#xff1a;无法拷贝NaN、Infinity、undefined这类值 无法拷贝成功的原因&#xff1a; 对于JSON来说&#xff0c;它支持的数据类型只有null、string、number、boolean、Object、Array&#xff0c;所以对于它不支持的数据类…

AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率

在软件测试中,AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率。以下是几个具体的应用场景及对应的代码实现示例: 1. 自动生成测试用例 AI大模型可以根据需求文档或用户故事自动生成测试用例。 代码示例(使用 OpenAI GPT API): …

【Linux】Ubuntu Linux 系统——Node.js 开发环境

ℹ️大家好&#xff0c;我是练小杰&#xff0c;今天星期五了&#xff0c;同时也是2025年的情人节&#xff0c;今晚又是一个人的举个爪子&#xff01;&#xff01; &#x1f642; 本文是有关Linux 操作系统中 Node.js 开发环境基础知识&#xff0c;后续我将添加更多相关知识噢&a…

Dockerfile 编写推荐

一、导读 本文主要介绍在编写 docker 镜像的时候一些需要注意的事项和推荐的做法。 虽然 Dockerfile 简化了镜像构建的过程&#xff0c;并且把这个过程可以进行版本控制&#xff0c;但是不正当的 Dockerfile 使用也会导致很多问题。 docker 镜像太大。如果你经常使用镜像或者…

mysql 学习16 视图,存储过程,存储函数,触发器

视图&#xff0c; 存储过程&#xff0c; 存储函数 触发器