JVM——JVM是怎么实现invokedynamic的?

JVM是怎么实现invokedynamic的?

在Java 7引入invokedynamic之前,Java虚拟机(JVM)在方法调用方面相对较为“僵化”。传统的Java方法调用主要依赖于invokestatic、invokespecial、invokevirtual和invokeinterface这四条指令,每条指令都明确绑定了目标方法的类名、方法名和方法描述符。这种绑定方式虽然稳定,但对于动态语言的支持却显得力不从心。动态语言强调“鸭子类型”(duck typing),即只要对象表现出某种行为,就认为它符合某种类型,而不必显式继承某个类或实现某个接口。为了打破这种限制,Java 7引入了invokedynamic指令,为JVM上的动态语言支持铺平了道路,同时也为Java自身的语言特性发展(如Lambda表达式)提供了强有力的支持。

invokedynamic指令的基本概念

invokedynamic指令的核心在于引入了“调用点”(CallSite)这一概念。调用点是一个抽象类,它将方法调用与目标方法的链接推迟到运行时进行。每个invokedynamic指令在执行时都会绑定一个调用点对象,该对象负责在运行时确定要调用的目标方法。调用点对象可以是ConstantCallSite(不可变调用点)、MutableCallSite(可变调用点)或VolatileCallSite(线程安全可变调用点)。通过调用点,JVM能够在运行时灵活地选择目标方法,从而支持动态类型语言的灵活调用机制。

import java.lang.invoke.*;
​
public class ConstantCallSiteDemo {public static void main(String[] args) throws Throwable {MethodHandles.Lookup lookup = MethodHandles.lookup();MethodType methodType = MethodType.methodType(void.class);MethodHandle methodHandle = lookup.findStatic(ConstantCallSiteDemo.class, "hello", methodType);CallSite callSite = new ConstantCallSite(methodHandle);((ConstantCallSite) callSite).dynamicInvoker().invokeExact();}
​public static void hello() {System.out.println("Hello, World!");}
}

invokedynamic的底层实现

(一)启动方法(Bootstrap Method)

当JVM第一次遇到invokedynamic指令时,它会执行该指令关联的启动方法。启动方法是一个特殊的静态方法,它负责创建并返回一个CallSite对象。启动方法的第一个参数必须是MethodHandles.Lookup对象,用于提供对类成员的访问权限;第二个参数是目标方法的名称(String类型);第三个参数是MethodType,表示目标方法的类型。除此之外,启动方法还可以接受其他参数,用于辅助生成CallSite对象。

import java.lang.invoke.*;
​
public class BootstrapDemo {public static void main(String[] args) throws Throwable {// 创建方法句柄MethodHandles.Lookup lookup = MethodHandles.lookup();MethodType type = MethodType.methodType(void.class);MethodHandle target = lookup.findStatic(BootstrapDemo.class, "hello", type);
​// 创建调用点CallSite callSite = new ConstantCallSite(target);
​// 获取动态调用的入口点MethodHandle dynamicInvoker = callSite.dynamicInvoker();
​// 动态调用dynamicInvoker.invokeExact();}
​public static void hello() {System.out.println("Hello, Invokedynamic!");}
}

启动方法返回一个CallSite对象,这个对象将与invokedynamic指令绑定,并在后续调用中直接使用。

(二)动态链接

调用点对象中的动态链接过程涉及到方法句柄(MethodHandle)的使用。方法句柄是一个强类型的引用,可以直接执行。它可以指向静态方法、实例方法、构造函数,甚至是字段的getter和setter方法(在方法句柄中表现为虚构方法)。与反射不同,方法句柄的权限检查在创建时完成,后续调用无需重复检查,因此性能更高。

import java.lang.invoke.*;
​
public class MethodHandleDemo {public static void main(String[] args) throws Throwable {// 创建方法句柄MethodHandles.Lookup lookup = MethodHandles.lookup();MethodType type = MethodType.methodType(void.class);MethodHandle methodHandle = lookup.findStatic(MethodHandleDemo.class, "hello", type);
​// 调用方法句柄methodHandle.invokeExact();}
​public static void hello() {System.out.println("Hello, Method Handle!");}
}

(三)Lambda 表达式与 invokedynamic

Lambda 表达式的出现是 Java 8 的一个重大更新,它允许开发者以更简洁的方式编写匿名类。Lambda 表达式的实现正是基于 invokedynamic 指令。当编译器遇到 Lambda 表达式时,会将其转换为一个函数式接口的实例。这个转换过程通过 invokedynamic 指令完成,编译器会生成一个 bootstrap 方法,该方法在运行时生成一个适配器类,实现对应的函数式接口。

例如,以下代码:

Comparator<String> comparator = (a, b) -> a.compareTo(b);

编译器会将其转换为类似如下的 invokedynamic 指令:

aload_1
invokedynamic #5, 0 // BootstrapMethod

对应的 bootstrap 方法会生成一个实现 Comparator 接口的适配器类,并返回该类的实例。

import java.lang.invoke.*;
​
public class LambdaBootstrap {public static void main(String[] args) throws Throwable {MethodHandles.Lookup lookup = MethodHandles.lookup();MethodHandle mh = lookup.findStatic(LambdaBootstrap.class, "lambdaImpl", MethodType.methodType(void.class, String.class));CallSite callSite = new ConstantCallSite(mh.asType(MethodType.methodType(void.class, Object.class)));((ConstantCallSite) callSite).dynamicInvoker().invokeExact("Hello, Lambda!");}
​private static void lambdaImpl(String s) {System.out.println(s);}
}

三、invokedynamic的性能分析

(一)方法句柄的性能

方法句柄的性能在某些场景下接近直接方法调用。通过将方法句柄存储在 final 静态变量中,即时编译器可以对其进行内联优化,从而消除方法句柄调用的开销。然而,如果方法句柄被频繁更新或无法被识别为常量,其性能可能接近反射调用,存在一定的性能开销。

import java.lang.invoke.MethodHandle;
import java.lang.invoke.MethodHandles;
import java.lang.invoke.MethodType;
​
public class MethodHandlePerformance {private static final MethodHandle MH;
​static {try {MethodHandles.Lookup lookup = MethodHandles.lookup();MethodType type = MethodType.methodType(void.class, int.class);MH = lookup.findStatic(MethodHandlePerformance.class, "target", type);} catch (Throwable e) {throw new RuntimeException(e);}}
​public static void main(String[] args) throws Throwable {long start = System.currentTimeMillis();for (int i = 0; i < 1000000000; i++) {MH.invokeExact(42);}System.out.println("MethodHandle: " + (System.currentTimeMillis() - start) + " ms");}
​public static void target(int i) {// 空方法}
}

(二)Lambda 表达式的性能

Lambda 表达式的性能在大多数情况下接近直接方法调用。对于未捕获变量的 Lambda 表达式,即时编译器可以内联其调用,性能与直接调用几乎无差异。而对于捕获变量的 Lambda 表达式,即时编译器的逃逸分析可以优化掉适配器实例的创建,使其性能接近未捕获变量的 Lambda 表达式。然而,在逃逸分析无法生效的情况下,可能会产生适配器实例的创建开销,性能会有所下降。

import java.util.function.IntConsumer;
​
public class LambdaPerformance {public static void main(String[] args {int x = 42;long start = System.currentTimeMillis();for (int i = 0; i < 1000000000; i++) {((IntConsumer) (j) -> {// 空实现}).accept(42);}System.out.println("Lambda: " + (System.currentTimeMillis() - start) + " ms");}
}

invokedynamic的实际应用与优势

(一)动态语言支持

invokedynamic为动态语言在JVM上的实现提供了基础支持。动态语言(如Groovy、JavaScript等)可以利用invokedynamic实现高效的动态方法调用,而无需通过反射或复杂的桥接代码。例如,在Groovy中,方法调用可以通过invokedynamic直接链接到目标方法,而无需显式的类型检查和方法查找,从而提高性能。

// Groovy示例
def hello(name) {println "Hello, $name!"
}hello "Invokedynamic"

(二)Java 8 的 Lambda 表达式

如前所述,Java 8 的 Lambda 表达式借助 invokedynamic 实现了简洁高效的语法糖。Lambda 表达式可以被转化为函数式接口的实例,而无需显式地实现接口。这不仅简化了代码,还提高了性能,因为 invokedynamic 允许即时编译器对 Lambda 表达式进行内联优化。

import java.util.function.Consumer;public class LambdaExample {public static void main(String[] args) {Consumer<String> consumer = (s) -> {System.out.println(s);};consumer.accept("Hello, Lambda!");}
}

(三)函数式编程

invokedynamic 支持函数式编程风格,使得 Java 开发者能够更方便地编写函数式代码。通过 Lambda 表达式和方法引用,开发者可以将行为(函数)作为参数传递给方法,或者将方法的结果作为函数返回。这种编程风格在处理集合操作(如流式 API)时尤为强大。

import java.util.Arrays;
import java.util.List;
import java.util.function.Consumer;public class FunctionalExample {public static void main(String[] args) {List<String> names = Arrays.asList("Alice", "Bob", "Charlie");Consumer<String> printer = (name) -> System.out.println(name);names.forEach(printer);}
}

总结

invokedynamic 指令作为 Java 7 引入的一项革命性特性,为 JVM 带来了前所未有的灵活性和动态性。通过调用点(CallSite)和方法句柄(MethodHandle)的机制,invokedynamic 允许在运行时动态确定方法调用的目标,从而打破了传统方法调用的静态绑定限制。这不仅为动态语言在 JVM 上的高效实现铺平了道路,也为 Java 自身的语言发展注入了新的活力,使得诸如 Lambda 表达式等现代编程特性得以实现。在性能方面,尽管 invokedynamic 在某些复杂场景下可能存在一定的开销,但即时编译器的优化(如内联和逃逸分析)在大多数情况下能够使其性能接近甚至媲美直接方法调用。对于开发者而言,理解 invokedynamic 的工作原理有助于更好地利用 Java 8 及更高版本中的新特性,编写出更简洁、高效且具有函数式风格的代码,同时也为探索 JVM 上的动态语言世界打开了一扇大门。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/80259.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32教程:ADC原理及程序(基于STM32F103C8T6最小系统板标准库开发)*详细教程*

前言: 本文章介绍了STM32微控制器的ADC外设,介绍了ADC的底层原理以及基本结构,介绍了ADC有关的标准库函数,以及如何编写代码实现ADC对电位器电压的读取。 可以根据基本结构图来编写代码 大体流程: 1、开启RCC时钟(包括ADC和GPIO的时钟,另外ADCCLK的分频器,也需要配置…

2025年APP安全攻防指南:抵御DDoS与CC攻击的实战策略

2025年&#xff0c;随着AI技术与物联网设备的深度渗透&#xff0c;DDoS与CC攻击的复杂性和破坏性显著升级。攻击者通过伪造用户行为、劫持智能设备、利用协议漏洞等手段&#xff0c;对APP发起精准打击&#xff0c;导致服务瘫痪、用户流失甚至数据泄露。面对这一挑战&#xff0c…

STM32的定时器

定时器的介绍 介绍&#xff1a;STM32F103C8T6微控制器内部集成了多种类型的定时器&#xff0c;这些定时器在嵌入式系统中扮演着重要角色&#xff0c;用于计时、延时、事件触发以及PWM波形生成、脉冲捕获等应用。 *几种定时器&#xff08;STM32F103系列&#xff09;&#xff1…

算法中的数学:约数

1.求一个整数的所有约数 对于一个整数x&#xff0c;他的其中一个约数若为i&#xff0c;那么x/i也是x的一个约数。而其中一个约数的大小一定小于等于根号x&#xff08;完全平方数则两个约数都为根号x&#xff09;&#xff0c;所以我们只需要遍历到根号x&#xff0c;然后计算出另…

不同OS版本中的同一yum源yum list差异排查思路

问题描述&#xff1a; qemu-guest-agent二进制rpm包的yum仓库源和yum源仓库配置文件path_to_yum_conf&#xff0c; 通过yum list --available -c path_to_yum_conf 查询时&#xff0c;不同的OS版本出现了不同的结果 anolis-8无法识别 centos8可以识别 说明&#xff1a; 1 测试…

如何使用极狐GitLab 软件包仓库功能托管 helm chart?

极狐GitLab 是 GitLab 在中国的发行版&#xff0c;关于中文参考文档和资料有&#xff1a; 极狐GitLab 中文文档极狐GitLab 中文论坛极狐GitLab 官网 软件包库中的 Helm charts (BASIC ALL) WARNING:Helm chart 库正在开发中&#xff0c;由于功能有限&#xff0c;尚未准备好用…

【PostgreSQL数据分析实战:从数据清洗到可视化全流程】3.1 数据质量评估指标(完整性/一致性/准确性)

&#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 文章大纲 数据质量评估核心指标&#xff1a;完整性、一致性、准确性实战解析3.1 数据质量评估指标体系3.1.1 完整性&#xff1a;数据是否存在缺失1.1.1 核心定义与业务影响1.1.2 检测…

详解 FFMPEG 交叉编译 `FLAGS` 和 `INCLUDES` 的作用

FLAGS 和 INCLUDES这两行是 Android NDK 编译时的编译器选项&#xff0c;用于控制代码生成、优化、调试、安全性和头文件搜索路径。下面逐项详解&#xff1a; 1. FLAGS 详解&#xff08;编译器选项&#xff09; FLAGS 定义了传递给 C/C 编译器&#xff08;如 clang 或 gcc&…

【RK3588嵌入式图形编程】-Cairo-Cairo图形库支持后端

Cairo图形库支持后端 文章目录 Cairo图形库支持后端1、PNG图像后端2、PDF文件后端3、SVG文件后端4、GTK窗口支持Cairo库支持多种后端。在本文中,我们使用Cairo创建PNG图像、PDF文件、SVG文件,并在GTK窗口上绘制。 1、PNG图像后端 在第一个示例中,我们创建一个 PNG 图像。 …

【常用算法:排序篇】2.快速排序的算法精要

快速排序是算法领域的"九阳神功"&#xff0c;掌握其精髓能让你在算法修炼之路上突破瓶颈。 1. 快速排序的核心思想 快速排序&#xff08;Quicksort&#xff09;是一种基于分治思想的高效排序算法&#xff0c;核心步骤为&#xff1a; 选择基准值&#xff08;Pivot&…

在现代Web应用中集成 PDF.js (pdfjs-dist 5.2 ESM): 通过 jsdelivr 实现动态加载与批注功能的思考

PDF 文档在现代 Web 应用中越来越常见&#xff0c;无论是作为文档预览、报告展示还是在线编辑的载体。Mozilla 的 PDF.js 是一个功能强大的 JavaScript 库&#xff0c;它使得在浏览器端渲染和显示 PDF 文件成为可能&#xff0c;无需依赖原生插件。 本文将深入探讨如何在你的项…

基于FPGA控制ADC0832双通道采样+电压电流采样+LCD屏幕显示

基于FPGA控制ADC0832双通道采样电压电流采样LCD屏幕显示 前言一、芯片手册阅读1.SPI通信时序 二、仿真分析三、代码分析总结视频演示 前言 定制 要求使用ADC0832芯片进行ADC采样。其中电压采样以及电流采样是固定电路&#xff0c;是硬件设计&#xff0c;跟软件没没关系。本质上…

生产部署方案pm2配合python3脚本

前言 使用python3来处理redis 消息队列&#xff0c;记录下生产部署方案 「生产部署方案」&#xff1a; 多进程&#xff08;动态扩容&#xff09;无限自愈日志自动压缩系统级守护可多队列多worker 终极稳健版&#xff1a;PM2 Logrotate 自动扩容 守护链 适合&#xff1a…

Python全流程开发实战:基于IMAP协议安全下载个人Gmail邮箱内所有PDF附件

文章目录 一、需求分析与安全前置&#xff1a;为什么需要专用工具&#xff1f;1.1 痛点场景1.2 技术方案选择 二、准备工作&#xff1a;Gmail账号安全配置与环境搭建2.1 开启两步验证&#xff08;必做&#xff01;&#xff09;2.2 创建应用专用密码&#xff08;替代普通密码&am…

巧用python之--模仿PLC(PLC模拟器)

工作中用到了VM(VisionMaster4.3)有时候需要和PLC打交道,但是PLC毕竟是别人的,不方便修改别人的程序,这时候需要一个灵活的PLC模拟器是多么好呀! 先说背景: PLC型号 汇川Easy521: Modbus TCP 192.168.1.10:502 在汇川Easy521中Modbus保持寄存器D寄存器 ,在modbus协议中 0-4区…

docker构建镜像并上传dockerhub

docker构建镜像并上传dockerhub 前提条件&#xff1a;需要连接梯子 将梯子配置到虚拟机中&#xff08;确保主机能够连接 hub.docker.com&#xff09; 使用ipconfig 查询主机的 ip4地址虚拟机的连接模式改成桥接模式&#xff08;复制主机的地址网络&#xff09;将ip4配置到虚拟…

python实现的音乐播放器

python实现的音乐播放器 音乐播放器,原来写过一个简陋的例子,可见 https://blog.csdn.net/cnds123/article/details/137874107 那个不能拖动播放进度条上的滑块到新的位置播放。下面介绍的可以拖动播放进度条上的滑块到新的位置播放。 简单实用的音乐播放器 这个简单实用的…

[网安工具] 端口信息收集工具 —— 御剑高速 TCP 全端口扫描工具 · 使用手册

&#x1f31f;想了解其它网安工具&#xff1f;看看这个&#xff1a;[网安工具] 网络安全工具管理 —— 工具仓库 管理手册 https://github.com/NepoloHebo/Yujian-high-speed-TCP-full-port-scannerhttps://github.com/NepoloHebo/Yujian-high-speed-TCP-full-port-scanner 0…

数字孪生赋能智慧城市:从概念到落地的深度实践

在城市规模与复杂度持续攀升的当下&#xff0c;传统管理模式已难以满足现代城市精细化治理需求。数字孪生技术凭借构建虚拟城市镜像、实现实时数据交互与智能决策的特性&#xff0c;成为智慧城市建设的核心引擎。本文将通过多个典型案例&#xff0c;深度解析数字孪生技术如何重…

DeFi开发系统软件开发:技术架构与生态重构

DeFi开发系统软件开发&#xff1a;技术架构与生态重构 ——2025年去中心化金融开发的范式革新与实践指南 一、技术架构演进&#xff1a;从单一链到多链混合引擎 现代DeFi系统开发已从单一公链架构转向“跨链互操作混合模式”&#xff0c;结合中心化效率与去中心化安全双重优势…