类似wordpress的建站章丘网站开发
web/
2025/10/4 17:59:23/
文章来源:
类似wordpress的建站,章丘网站开发,彩票网站制作商,北京环球影城客流量统计从哪里看注#xff1a;本文为《动手学深度学习》开源内容#xff0c;部分标注了个人理解#xff0c;仅为个人学习记录#xff0c;无抄袭搬运意图 5.9 含并行连结的网络#xff08;GoogLeNet#xff09;
在2014年的ImageNet图像识别挑战赛中#xff0c;一个名叫GoogLeNet的网络结… 注本文为《动手学深度学习》开源内容部分标注了个人理解仅为个人学习记录无抄袭搬运意图 5.9 含并行连结的网络GoogLeNet
在2014年的ImageNet图像识别挑战赛中一个名叫GoogLeNet的网络结构大放异彩 [1]。它虽然在名字上向LeNet致敬但在网络结构上已经很难看到LeNet的影子。GoogLeNet吸收了NiN中网络串联网络的思想并在此基础上做了很大改进。在随后的几年里研究人员对GoogLeNet进行了数次改进本节将介绍这个模型系列的第一个版本。
5.9.1 Inception 块
GoogLeNet中的基础卷积块叫作Inception块得名于同名电影《盗梦空间》Inception。与上一节介绍的NiN块相比这个基础块在结构上更加复杂如图5.8所示。 图5.8 Inception块的结构 由图5.8可以看出Inception块里有4条并行的线路。前3条线路使用窗口大小分别是 1 × 1 1\times 1 1×1、 3 × 3 3\times 3 3×3和 5 × 5 5\times 5 5×5的卷积层来抽取不同空间尺寸下的信息其中中间2个线路会对输入先做 1 × 1 1\times 1 1×1卷积来减少输入通道数以降低模型复杂度。第四条线路则使用 3 × 3 3\times 3 3×3最大池化层后接 1 × 1 1\times 1 1×1卷积层来改变通道数。4条线路都使用了合适的填充来使输入与输出的高和宽一致。最后我们将每条线路的输出在通道维上连结并输入接下来的层中去。
Inception块中可以自定义的超参数是每个层的输出通道数我们以此来控制模型复杂度。
import time
import torch
from torch import nn, optim
import torch.nn.functional as Fimport sys
sys.path.append(..)
import d2lzh_pytorch as d2l
device torch.device(cuda if torch.cuda.is_available() else cpu)class Inception(nn.Module):# c1 - c4为每条线路里的层的输出通道数def __init__(self, in_c, c1, c2, c3, c4):super(Inception, self).__init__()# 线路1单1 x 1卷积层self.p1_1 nn.Conv2d(in_c, c1, kernel_size1)# 线路21 x 1卷积层后接3 x 3卷积层self.p2_1 nn.Conv2d(in_c, c2[0], kernel_size1)self.p2_2 nn.Conv2d(c2[0], c2[1], kernel_size3, padding1)# 线路31 x 1卷积层后接5 x 5卷积层self.p3_1 nn.Conv2d(in_c, c3[0], kernel_size1)self.p3_2 nn.Conv2d(c3[0], c3[1], kernel_size5, padding2)# 线路43 x 3最大池化层后接1 x 1卷积层self.p4_1 nn.MaxPool2d(kernel_size3, stride1, padding1)self.p4_2 nn.Conv2d(in_c, c4, kernel_size1)def forward(self, x):p1 F.relu(self.p1_1(x))p2 F.relu(self.p2_2(F.relu(self.p2_1(x))))p3 F.relu(self.p3_2(F.relu(self.p3_1(x))))p4 F.relu(self.p4_2(self.p4_1(x)))return torch.cat((p1, p2, p3, p4), dim1) # 在通道维上连结输出5.9.2 GoogLeNet模型
GoogLeNet跟VGG一样在主体卷积部分中使用5个模块block每个模块之间使用步幅为2的 3 × 3 3\times 3 3×3最大池化层来减小输出高宽。第一模块使用一个64通道的 7 × 7 7\times 7 7×7卷积层。
b1 nn.Sequential(nn.Conv2d(1, 64, kernel_size7, stride2, padding3),nn.ReLU(),nn.MaxPool2d(kernel_size3, stride2, padding1))第二模块使用2个卷积层首先是64通道的 1 × 1 1\times 1 1×1卷积层然后是将通道增大3倍的 3 × 3 3\times 3 3×3卷积层。它对应Inception块中的第二条线路。
b2 nn.Sequential(nn.Conv2d(64, 64, kernel_size1),nn.Conv2d(64, 192, kernel_size3, padding1),nn.MaxPool2d(kernel_size3, stride2, padding1))第三模块串联2个完整的Inception块。第一个Inception块的输出通道数为 64 128 32 32 256 641283232256 641283232256其中4条线路的输出通道数比例为 64 : 128 : 32 : 32 2 : 4 : 1 : 1 64:128:32:322:4:1:1 64:128:32:322:4:1:1。其中第二、第三条线路先分别将输入通道数减小至 96 / 192 1 / 2 96/1921/2 96/1921/2和 16 / 192 1 / 12 16/1921/12 16/1921/12后再接上第二层卷积层。第二个Inception块输出通道数增至 128 192 96 64 480 1281929664480 1281929664480每条线路的输出通道数之比为 128 : 192 : 96 : 64 4 : 6 : 3 : 2 128:192:96:64 4:6:3:2 128:192:96:644:6:3:2。其中第二、第三条线路先分别将输入通道数减小至 128 / 256 1 / 2 128/2561/2 128/2561/2和 32 / 256 1 / 8 32/2561/8 32/2561/8。
b3 nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),Inception(256, 128, (128, 192), (32, 96), 64),nn.MaxPool2d(kernel_size3, stride2, padding1))第四模块更加复杂。它串联了5个Inception块其输出通道数分别是 192 208 48 64 512 1922084864512 1922084864512、 160 224 64 64 512 1602246464512 1602246464512、 128 256 64 64 512 1282566464512 1282566464512、 112 288 64 64 528 1122886464528 1122886464528和 256 320 128 128 832 256320128128832 256320128128832。这些线路的通道数分配和第三模块中的类似首先含 3 × 3 3\times 3 3×3卷积层的第二条线路输出最多通道其次是仅含 1 × 1 1\times 1 1×1卷积层的第一条线路之后是含 5 × 5 5\times 5 5×5卷积层的第三条线路和含 3 × 3 3\times 3 3×3最大池化层的第四条线路。其中第二、第三条线路都会先按比例减小通道数。这些比例在各个Inception块中都略有不同。
b4 nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),Inception(512, 160, (112, 224), (24, 64), 64),Inception(512, 128, (128, 256), (24, 64), 64),Inception(512, 112, (144, 288), (32, 64), 64),Inception(528, 256, (160, 320), (32, 128), 128),nn.MaxPool2d(kernel_size3, stride2, padding1))第五模块有输出通道数为 256 320 128 128 832 256320128128832 256320128128832和 384 384 128 128 1024 3843841281281024 3843841281281024的两个Inception块。其中每条线路的通道数的分配思路和第三、第四模块中的一致只是在具体数值上有所不同。需要注意的是第五模块的后面紧跟输出层该模块同NiN一样使用全局平均池化层来将每个通道的高和宽变成1。最后我们将输出变成二维数组后接上一个输出个数为标签类别数的全连接层。
b5 nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),Inception(832, 384, (192, 384), (48, 128), 128),d2l.GlobalAvgPool2d())net nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))GoogLeNet模型的计算复杂而且不如VGG那样便于修改通道数。本节里我们将输入的高和宽从224降到96来简化计算。下面演示各个模块之间的输出的形状变化。
net nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))
X torch.rand(1, 1, 96, 96)
for blk in net.children(): X blk(X)print(output shape: , X.shape)输出
output shape: torch.Size([1, 64, 24, 24])
output shape: torch.Size([1, 192, 12, 12])
output shape: torch.Size([1, 480, 6, 6])
output shape: torch.Size([1, 832, 3, 3])
output shape: torch.Size([1, 1024, 1, 1])
output shape: torch.Size([1, 1024])
output shape: torch.Size([1, 10])5.9.3 获取数据和训练模型
我们使用高和宽均为96像素的图像来训练GoogLeNet模型。训练使用的图像依然来自Fashion-MNIST数据集。
batch_size 128
# 如出现“out of memory”的报错信息可减小batch_size或resize
train_iter, test_iter d2l.load_data_fashion_mnist(batch_size, resize96)lr, num_epochs 0.001, 5
optimizer torch.optim.Adam(net.parameters(), lrlr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)输出
training on cuda
epoch 1, loss 0.0087, train acc 0.570, test acc 0.831, time 45.5 sec
epoch 2, loss 0.0032, train acc 0.851, test acc 0.853, time 48.5 sec
epoch 3, loss 0.0026, train acc 0.880, test acc 0.883, time 45.4 sec
epoch 4, loss 0.0022, train acc 0.895, test acc 0.887, time 46.6 sec
epoch 5, loss 0.0020, train acc 0.906, test acc 0.896, time 43.5 sec小结
Inception块相当于一个有4条线路的子网络。它通过不同窗口形状的卷积层和最大池化层来并行抽取信息并使用 1 × 1 1\times 1 1×1卷积层减少通道数从而降低模型复杂度。GoogLeNet将多个设计精细的Inception块和其他层串联起来。其中Inception块的通道数分配之比是在ImageNet数据集上通过大量的实验得来的。GoogLeNet和它的后继者们一度是ImageNet上最高效的模型之一在类似的测试精度下它们的计算复杂度往往更低。
参考文献
[1] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D. Rabinovich, A.(2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
[2] Ioffe, S., Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
[3] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2818-2826).
[4] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A. A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 4, p. 12). 注除代码外本节与原书此节基本相同原书传送门
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/86908.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!