AI第一天 自我理解笔记--微调大模型

目录

1. 确定目标:明确任务和数据

2. 选择预训练模型

3. 数据预处理

(1) 数据清洗与格式化

(2) 划分数据集

(3) 数据加载与批处理

4. 构建微调模型架构

(1) 加载预训练模型

(2) 修改模型尾部(适配任务)

(3) 冻结部分层(可选)

5. 设置超参数

(1) 优化器与学习率

(2) 损失函数

(3) 其他超参数

6. 微调模型

(1) 定义训练循环

(2) 监控训练过程

7. 调整超参数(可选)

8. 评估与部署

(1) 模型评估

(2) 部署模型

9. 常见问题与解决方案

(1) 过拟合

(2) 欠拟合

(3) 计算资源不足

10. 总结:微调的流程图

附录:代码示例(文本分类)

关键点回顾


1. 确定目标:明确任务和数据

  • 任务类型
    确定你要解决的问题类型,例如:
    • 文本分类(如情感分析)
    • 图像分类(如识别猫狗)
    • 序列生成(如文本生成或机器翻译)
  • 数据集
    收集或准备与任务相关的数据集,并进行初步分析:
    • 数据规模(样本数量、类别分布)
    • 数据质量(是否有噪声、缺失值、标签错误)
    • 数据预处理需求(如文本清洗、图像归一化)

2. 选择预训练模型

  • 预训练模型
    根据任务选择合适的预训练模型:
    • 文本任务:BERT、RoBERTa、GPT、T5
    • 图像任务:ResNet、EfficientNet、ViT
    • 多模态任务:CLIP、Mixture of Experts(MoE)
  • 模型来源
    常用的模型库包括:
    • Hugging Face(如transformers库)
    • PyTorch/TensorFlow官方模型库
    • Timm库(针对计算机视觉)

3. 数据预处理

(1) 数据清洗与格式化
  • 文本数据
    • 去除特殊字符、停用词
    • 统一大小写(如全小写)
    • 处理缺失值或异常标签
  • 图像数据
    • 调整尺寸(如统一为224x224)
    • 归一化(如将像素值缩放到[0,1]或[-1,1])
    • 数据增强(如旋转、翻转、裁剪)
(2) 划分数据集
  • 训练集:用于模型训练(通常占80%)。
  • 验证集:用于调参和监控过拟合(通常占10%)。
  • 测试集:最终评估模型性能(通常占10%)。
(3) 数据加载与批处理
  • 使用DataLoader(PyTorch)或tf.data(TensorFlow)将数据分批次加载:
     python 

    深色版本

    from torch.utils.data import DataLoader, Datasetclass MyDataset(Dataset):def __init__(self, data, labels):self.data = dataself.labels = labelsdef __len__(self):return len(self.data)def __getitem__(self, idx):return self.data[idx], self.labels[idx]train_dataset = MyDataset(train_data, train_labels)
    train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)

4. 构建微调模型架构

(1) 加载预训练模型
  • 文本模型示例(Hugging Face)
     python 

    深色版本

    from transformers import BertModel, BertConfigmodel = BertModel.from_pretrained("bert-base-uncased")
  • 图像模型示例(PyTorch)
     python 

    深色版本

    import torchvision.models as modelsmodel = models.resnet18(pretrained=True)
(2) 修改模型尾部(适配任务)
  • 分类任务:替换最后一层全连接层(全连接层的输出维度需匹配任务类别数):
     python 

    深色版本

    # 对于ResNet:
    num_features = model.fc.in_features
    model.fc = nn.Linear(num_features, num_classes)  # num_classes是目标类别数# 对于BERT:
    model.classifier = nn.Linear(model.config.hidden_size, num_classes)
(3) 冻结部分层(可选)
  • 冻结预训练层:保留底层的通用特征提取能力,只训练新增层:
     python 

    深色版本

    for param in model.parameters():param.requires_grad = False  # 冻结所有层# 解冻最后一层(如分类层)
    for param in model.fc.parameters():  # 对BERT可能是model.classifier.parameters()param.requires_grad = True

5. 设置训练参数

(1) 优化器与学习率
  • 选择优化器
    • 常用优化器:Adam、AdamW、SGD
    • 示例:
       python 

      深色版本

      optimizer = torch.optim.Adam(model.parameters(), lr=2e-5)
  • 学习率(Learning Rate)
    • 预训练模型微调时,学习率通常比从头训练低(如1e-5到1e-3)。
    • 可使用学习率调度器(如torch.optim.lr_scheduler.CosineAnnealingLR)。
(2) 损失函数
  • 根据任务选择损失函数:
    • 分类任务:交叉熵损失(nn.CrossEntropyLoss
    • 回归任务:均方误差(nn.MSELoss
    • 生成任务:交叉熵或自定义损失(如BERT的MLM损失)
(3) 其他超参数
  • 批量大小(Batch Size):根据硬件限制选择(如32、64、128)。
  • 训练轮次(Epochs):通常5-20轮,根据验证集表现调整。
  • 早停(Early Stopping):当验证损失不再下降时停止训练,防止过拟合。

6. 训练模型

(1) 定义训练循环
 

python

深色版本

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)for epoch in range(num_epochs):model.train()total_loss = 0for batch in train_loader:inputs, labels = batchinputs, labels = inputs.to(device), labels.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()total_loss += loss.item()# 验证阶段model.eval()val_loss = 0with torch.no_grad():for batch in val_loader:inputs, labels = batchinputs, labels = inputs.to(device), labels.to(device)outputs = model(inputs)val_loss += criterion(outputs, labels).item()print(f"Epoch {epoch+1}, Train Loss: {total_loss/len(train_loader)}, Val Loss: {val_loss/len(val_loader)}")
(2) 监控训练过程
  • 使用工具如TensorBoardWeights & Biases记录损失、准确率等指标。
  • 定期保存模型检查点(Checkpoint):
     python 

    深色版本

    torch.save(model.state_dict(), f"model_epoch{epoch}.pth")

7. 调整超参数(可选)

  • 网格搜索(Grid Search)或随机搜索(Random Search)
    调整学习率、批量大小、层冻结策略等。
  • 自动化工具
    使用OptunaRay Tune进行超参数优化。

8. 评估与部署

(1) 模型评估
  • 在测试集上评估最终性能:
     python 

    深色版本

    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()print(f"Test Accuracy: {100. * correct / len(test_loader.dataset)}%")
(2) 部署模型
  • 导出模型为ONNX格式或使用框架工具(如TorchScript):
     python 

    深色版本

    torch.onnx.export(model, torch.randn(1, 3, 224, 224), "model.onnx")

9. 常见问题与解决方案

(1) 过拟合
  • 解决方法
    • 增加数据增强(如随机裁剪、翻转)。
    • 添加正则化(如Dropout、L2正则化)。
    • 减少模型复杂度或训练轮次。
(2) 欠拟合
  • 解决方法
    • 增加训练轮次或学习率。
    • 解冻更多层(释放模型潜力)。
    • 尝试更复杂的模型架构。
(3) 计算资源不足
  • 解决方法
    • 使用小批量(如batch_size=16)。
    • 使用模型量化或知识蒸馏(Knowledge Distillation)。
    • 选择轻量级模型(如MobileNet、DistilBERT)。

10. 总结:微调的流程图

 

深色版本

1. 确定任务和数据 →  
2. 选择预训练模型 →  
3. 数据预处理 →  
4. 修改模型尾部 →  
5. 设置超参数 →  
6. 训练并监控 →  
7. 调参优化 →  
8. 评估与部署

附录:代码示例(文本分类)

以下是一个完整的微调BERT进行文本分类的代码框架:

 

python

深色版本

import torch
from transformers import BertTokenizer, BertForSequenceClassification
from torch.utils.data import Dataset, DataLoader# 加载预训练模型和分词器
model_name = "bert-base-uncased"
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=num_classes)# 数据预处理
class TextDataset(Dataset):def __init__(self, texts, labels):self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=512)self.labels = labelsdef __len__(self):return len(self.labels)def __getitem__(self, idx):item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}item["labels"] = torch.tensor(self.labels[idx])return item# 加载数据
train_dataset = TextDataset(train_texts, train_labels)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)# 训练配置
device = torch.device("cuda")
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=2e-5)
criterion = nn.CrossEntropyLoss()# 训练循环(参考步骤6)

关键点回顾

  • 微调的核心:利用预训练模型的通用特征,仅针对特定任务调整部分参数。
  • 数据质量:垃圾进,垃圾出(Garbage In, Garbage Out)。
  • 超参数调优:学习率、批量大小、层冻结策略是关键。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/72482.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机视觉——深入理解卷积神经网络与使用卷积神经网络创建图像分类算法

引言 卷积神经网络(Convolutional Neural Networks,简称 CNNs)是一种深度学习架构,专门用于处理具有网格结构的数据,如图像、视频等。它们在计算机视觉领域取得了巨大成功,成为图像分类、目标检测、图像分…

[C++面试] 关于deque

一、入门 1、deque与vector的区别 deque的迭代器包含以下信息: 当前缓冲区指针(current_buffer)当前元素在缓冲区内的位置(current)中控器的位置(map) 每次移动迭代器时,需检查是…

服务性能防腐体系:基于自动化压测的熔断机制

01# 背景 在系统架构的演进过程中,项目初始阶段都会通过压力测试构建安全护城河,此时的服务性能与资源水位保持着黄金比例关系。然而在业务高速发展时期,每个冲刺周期都被切割成以业务需求为单位的开发单元,压力测试逐渐从必选项…

SpringBoot 和vue前后端配合开发网页拼图10关游戏源码技术分享

今天分享一个 前后端结合 的网页游戏 开发项目源码技术。 这也是我第一次写游戏类的程序,虽然不是特别复杂的游戏,但是是第一次写,肯定要记录一下了,哈哈。 游戏的内容 就是 我们显示中玩的那个 拼图碎片的 游戏,类似下…

【k8s002】k8s健康检查与故障诊断

k8s健康检查与故障诊断 ‌一、集群状态检查‌ ‌检查节点健康状态‌ kubectl get nodes -o wide # 查看节点状态及基本信息 kubectl describe node <node-name> # 分析节点详细事件&#xff08;如资源不足、网络异常&#xff09; kubectl top nodes …

01-Canvas-使用fabric初始

fabric官网&#xff1a; https://fabric5.fabricjs.com/demos/ 创建画布并绘制 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-sca…

【机器学习-基础知识】统计和贝叶斯推断

1. 概率论基本概念回顾 1. 概率分布 定义: 概率分布(Probability Distribution)指的是随机变量所有可能取值及其对应概率的集合。它描述了一个随机变量可能取的所有值以及每个值被取到的概率。 对于离散型随机变量,使用概率质量函数来描述。对于连续型随机变量,使用概率…

常见限流算法及实现

1. 固定窗口计数器&#xff08;Fixed Window Counter&#xff09; 原理&#xff1a;在固定时间窗口&#xff08;如1分钟&#xff09;内统计请求数&#xff0c;超过阈值则拒绝后续请求。优点&#xff1a;实现简单&#xff0c;内存占用低。缺点&#xff1a;存在窗口切换时的流量…

《TCP/IP网络编程》学习笔记 | Chapter 18:多线程服务器端的实现

《TCP/IP网络编程》学习笔记 | Chapter 18&#xff1a;多线程服务器端的实现 《TCP/IP网络编程》学习笔记 | Chapter 18&#xff1a;多线程服务器端的实现线程的概念引入线程的背景线程与进程的区别 线程创建与运行pthread_createpthread_join可在临界区内调用的函数工作&#…

创新实践分享:基于边缘智能+扣子的智能取物机器人解决方案

在 2024 年全国大学生物联网设计竞赛中&#xff0c;火山引擎作为支持企业&#xff0c;不仅参与了赛道的命题设计&#xff0c;还为参赛队伍提供了相关的硬件和软件支持。以边缘智能和扣子的联合应用为核心&#xff0c;参赛者们在这场竞赛中展现出了卓越的创新性和实用性&#xf…

QT:动态属性和对象树

动态对象 1.添加Q_PROPERTY对象 #ifndef MYPROPERTYCLASS_H #define MYPROPERTYCLASS_H#include <QObject>class MyPropertyClass : public QObject {Q_OBJECTQ_PROPERTY(QString mask READ mask WRITE setMask NOTIFY maskChanged) public:explicit MyPropertyClass(Q…

MobileNet家族:从v1到v4的架构演进与发展历程

MobileNet 是一个专为移动设备和嵌入式系统设计的轻量化卷积神经网络&#xff08;CNN&#xff09;家族&#xff0c;旨在在资源受限的环境中实现高效的图像分类、对象检测和语义分割等任务。自 2017 年首次推出以来&#xff0c;MobileNet 经历了从 v1 到 v4 的多次迭代&#xff…

在 Windows 上使用 choco 安装 mkcert 并配置 Vue 运行HTTPS

解决在Windows上使用Vue本地运行HTTPS的问题,vue-cli或vite都可以使用 步骤 1&#xff1a;确认 Chocolatey 是否已安装 1. 检查 choco 命令是否可用 打开 PowerShell&#xff08;管理员权限&#xff09;&#xff0c;输入&#xff1a; choco -v如果显示版本号&#xff08;如…

【PHP】新版本特性记录(持续更新)

文章目录 前言PHP 7.01&#xff09;NULL合并运算符&#xff1a;??2&#xff09;参数、返回值支持类型声明3&#xff09;太空船操作符&#xff1a;<>4&#xff09;通过 define 定义常量数组5&#xff09;匿名类实例化6&#xff09;字符串里使用\u转义unicode codepoint …

【记】如何理解kotlin中的委托属性?

1. 什么是委托属性&#xff1f; 委托属性的核心思想是&#xff1a; 你可以将一个属性的 getter 和 setter 的逻辑交给一个外部对象&#xff08;称为委托对象&#xff09;来处理。这个外部对象负责存储属性的值&#xff0c;并提供自定义的 get 和 set 行为。 通过委托属性&am…

使用自动导入后,eslint报错 eslint9

前提&#xff1a;使用pnpm create vuelatest创建vue应用&#xff0c;并且在创建项目时就勾选eslint和prettier&#xff0c;不然有些配置还需要手动配&#xff0c;比如解决eslint和prettier的冲突问题 1. 解决使用自动导入后Eslint报错问题 配置vite.config.ts // 自动导入api…

springboot EasyExcel 实现导入导出

1. 添加依赖 确保 Maven 依赖中包含 EasyExcel 3.0.5&#xff1a; <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.0.5</version></dependency><!-- excel工具 --><dep…

实现悬浮按钮拖动,兼容h5和微信小程序

h5用js写&#xff0c;微信小程序用 代码里面没有完全实现吸附边缘的功能&#xff0c;需要吸附边缘的话还得自己再完善下&#xff08;h5的吸附边缘是可以的&#xff0c;小程序的还有点问题&#xff09; 主要功能是&#xff1a;图片上写文字的悬浮按钮&#xff0c;文字使用的是…

2、操作系统之软件基础

一、硬件支持系统 &#xff0c;系统管理硬件 操作系统核心功能可以分为&#xff1a; 守护者&#xff1a;对硬件和软件资源的管理协调者&#xff1a;通过机制&#xff0c;将各种各样的硬件资源适配给软件使用。 所以为了更好的管理硬件&#xff0c;操作系统引进了软件。其中3大…

17 | 实现简洁架构的 Biz 层

提示&#xff1a; 所有体系课见专栏&#xff1a;Go 项目开发极速入门实战课&#xff1b;欢迎加入 云原生 AI 实战 星球&#xff0c;12 高质量体系课、20 高质量实战项目助你在 AI 时代建立技术竞争力&#xff08;聚焦于 Go、云原生、AI Infra&#xff09;&#xff1b;本节课最终…