创新实践分享:基于边缘智能+扣子的智能取物机器人解决方案

在 2024 年全国大学生物联网设计竞赛中,火山引擎作为支持企业,不仅参与了赛道的命题设计,还为参赛队伍提供了相关的硬件和软件支持。以边缘智能和扣子的联合应用为核心,参赛者们在这场竞赛中展现出了卓越的创新性和实用性,将边缘智能与扣子的技术巧妙地应用于机器人、家庭陪护、智慧康养、智慧座舱等多个领域 ,为未来行业应用结合大模型的 AIoT 解决方案探索出更多可能性。

本文将聚焦机器人领域,详细介绍“少年先疯”队伍,基于火山引擎边缘智能及扣子,打造的家庭助老助残智能取物机器人解决方案 。

多样化需求驱动家庭机器人智能化升级

据智研咨询报告显示,2021 年,我国 65 岁及以上人数增长至 20059 万人,增速达 5.22%。随着社会老龄化加剧,养老问题日益凸显,而护理人员由于工作负担重、薪水偏低等问题,已经出现了供不应求的局面。因此,家庭服务机器人的研究与应用是社会发展的必然趋势,对提高人民生活质量、缓解我国人口老龄化社会问题具有重要意义。德国国际机器人联合会发表的《世界机器人报告》中指出,消费者需求最强劲的是家用机器人领域,2022 年售出近 490 万台机器人。

然而,当前服务机器人的智能化程度还不能满足室内场景下人机交互需求。主要存在的问题包括:

  • 家庭劳动机器化需求: 在日益智能化和自动化的时代,家庭中仍有许多繁重的体力劳动需要手动完成,如搬运重物、清理大型杂物等。这些任务不仅耗时耗力,还可能对家庭成员,尤其是老年人和身体虚弱者,带来身体上的负担和安全隐患。

  • 家庭服务机器人功能单一: 现有的家庭服务机器人多为专用型,功能单一,如打扫、陪伴、安防等。为了全面满足家庭的多样化需求,通常需要购置多个不同类型的机器人,这不仅增加了购买成本,也提高了管理和维护的复杂性。此外,由于各机器人之间缺乏协同能力,用户体验往往不尽如人意。

  • 定位和导航精度低: 在复杂的室内环境中,家庭服务机器人面临着定位与导航精度的重大挑战。传统的定位技术在复杂环境中表现不佳,导致机器人在执行任务时无法准确识别自身位置或规划最优路径,影响任务执行效率和用户体验。

如何赋予机器人精准的取物、搬运能力?如何让机器人在生活层面真正实现养老助残?来自湖北工业大学的“少年先疯”队伍,通过运用火山引擎边缘智能与扣子的能力,打造家庭助老助残智能取物机器人。在先进智能机器人技术的基础上,通过深度学习,实现了目标识别、自主导航、主动避障、机械臂精准操作等智能化功能,将人工智能与物品搬运技术深度融合,构建高效的自动化物品搬运解决方案。

在实际运用中,家庭助老助残智能取物机器人不仅能整理玩具、清理垃圾,显著提升生活便利性,还能针对特定需求,如帮助老人拾取高处书籍、遥控器或地面小物件,并通过先进的识别技术安全递送,减轻老人身体负担。此外,机器人还具备家庭巡视功能,可以完成自主导航,检查老人安全状况,让家人更放心。

基于边缘智能 + 扣子的智能取物机器人设计方案

整体方案介绍

家庭助老助残智能取物机器人集成了家庭语音助手和安防功能,同时配备了自主导航与机械臂抓取技术,它能精确响应用户指令,自主导航至指定位置,准确抓取目标物体并将其递送至用户手中。

智能取物机器人解决方案,主要包括以下5个主要能力:

  • 自由度机械臂 利用高精度伺服电机和多自由度关节设计,实现对复杂空间中物体的灵活抓取和放置,提高取物效率和准确性。

  • 视觉识别系统 : 利用深度学习算法和高分辨率摄像头,进行物体识别和位置检测,确保机器人能够精准定位并抓取目标物品。

  • 语音控制: 集成自然语言处理技术,支持用户通过语音命令控制机器人,实现更加便捷的人机交互。

  • 安全保护机制: 配备传感器,实时监测机器人运行状态和环境变化,避免碰撞和意外情况,提高使用安全性。

  • 自学习算法: 利用机器学习技术,根据用户的使用习惯和需求,不断优化机器人动作策略,提高操作效率和用户满意度。

其中,通过火山引擎边缘智能帮助智能取物机器人接入和管理机器人大脑,连接主板所有设备信息,集成机器人搭载的摄像头,并实现了对设备数据的直观展示与记录,助力整体方案顺利运行,此外,通过火山引擎边缘智能和扣子的联合应用,还帮助机器人实现了定时巡逻、室内跌倒检测、监控预警 等能力。

边缘智能 + 扣子创新应用

“少年先疯”队伍将火山引擎边缘智能平台上的摔倒检测模型,集成到机器人的主板上,边缘智能的数据流处理模块负责收集模型检测的输出结果,这些结果将被开发者创建的虚拟设备捕获并存储。

此外,在扣子平台上设置了定时器触发机制,确保机器人在指定时间自动执行室内巡航任务。在此期间,扣子平台上的“检测屋内是否有人摔倒”工作流持续运作,通过 API 工具实时获取边缘智能平台中虚拟设备的最新数据。如果检测到虚拟设备的数据为“True”,表明室内有人摔倒,此时工作流将触发机器人发出语音警报,并将警报信息同步上传至边缘智能平台。

在监控功能方面,一旦检测到有人跌倒,机器人将立即发出警报,并将警报信息同步上传至火山引擎边缘智能平台,以此提醒监护人采取相应措施。

为实现整体效果,在基础设施层面,火山引擎边缘智能与扣子帮助机器人实现了:

  • 在一体机管理层面, 通过火山引擎边缘智能平台,接入了机器人的大脑——NVIDIA orin nano 开发板,实现对主板运行状态等信息进行监控。

  • 在设备管理层, 采用 MQTT 协议,将连接主板的所有设备信息,通过已部署的 MQTT 服务器托管至火山边缘智能平台,实现数据的直观展示与记录功能。同时,利用火山边缘智能平台兼容的官方 USB-Camera,将机器人搭载的摄像头集成至平台,为与扣子系统的后续联动打下坚实基础。

  • 在边缘推理方面, 火山边缘智能平台支持将机器学习模型直接部署至主板。通过将边缘智能提供的行人检测模型集成至主板,并通过已集成的摄像头设备监测室内行人流量,以判断是否存在非法入侵。模型推理的输出结果为在扣子系统中通过工作流实现 。

  • 在联合应用方面, 通过 URL 调用火山引擎联动扣子的插件,实现在扣子中对火山引擎中边缘智能平台上纳管的所有资源进行访问。通过利用工作流强大的多模块协同能力,实现了复杂的业务逻辑,如自动检测房屋内是否有行人闯入等,进一步丰富了机器人的功能。

在模型部署层面,智能取物机器人采用了火山引擎边缘智能平台的深度学习模型一键部署功能,轻松实现了稳定且精确的深度学习模型在机器人上的部署。同时,机器人还利用了边缘智能平台的数据处理能力,通过便捷的低代码工具对模型推理结果进行加工,使得扣子平台能够通过API工具轻松调用和获取这些数据。

用户可以在边缘智能平台上轻松部署原本需要大量时间和资源训练的深度学习模型,在扣子轻松定制模型推理结果的应用方式。这种便利不仅在家庭服务机器人中得到了有效实践,随着平台未来更多的互动和 API 工具的开发,边缘智能平台结合扣子的模式将开启更广阔的想象和创新空间。

解决方案效果展示

智能取物机器人拥有 4 种主要服务模式:

1.精准定位与靶向抓取模式。当用户对目标有清晰的需求时,下达明确指令,引导机器人精确抵达指定坐标并执行特定物体抓取。机器人遵循定位系统锁定目标,路径规划算法指引行进,抵达后执行物体识别与机械臂精准操控,确保任务顺利完成。

​​​​​​​2.导航、感知、抓取模式。 在此模式下,无需预设抓取对象,机器人先导航至用户指示的地点,抵达后,利用视觉及传感器技术对环境进行扫描,辨识潜在抓取目标。随后机器人将识别结果反馈给用户,用户可根据实际需求作出选择。此模式适用于用户对环境物体不熟悉或需即时决策的场景。

​​​​​​​3.垃圾清理模式。 机器人前往特定地点,如垃圾桶或指定清理区,进行垃圾处理。这个模式下,机器人先导航至垃圾集中区,利用视觉及传感器技术辨识垃圾位置与类别。确认后,机器人精准执行垃圾抓取,并将其运送至垃圾桶或处理点。

​​​​​​​4.巡航监察模式。 激活巡航模式后,机器人沿预定路线从起点启程,顺序巡视各个设定检查点,并最终闭环返回。途中,机器人在每个检查点停留执行规定的检测或任务。面对障碍物,机器人将展现出色的避障灵活性和路径规划效率。

END

随着技术的进步,智能取物机器人将朝着更智能化、个性化、人性化的方向发展,家庭看护行业的智能机器人将具备情感交互能力,更好地满足老人的心理需求,实现真正的家庭陪伴,让养老服务更加高效、温馨。未来,边缘智能与扣子的深度融合将为智慧家庭看护行业带来更多可能性。

资料来源:创新实践分享:基于边缘智能+扣子的智能取物机器人解决方案 - 文章 - 开发者社区 - 火山引擎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/72472.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT:动态属性和对象树

动态对象 1.添加Q_PROPERTY对象 #ifndef MYPROPERTYCLASS_H #define MYPROPERTYCLASS_H#include <QObject>class MyPropertyClass : public QObject {Q_OBJECTQ_PROPERTY(QString mask READ mask WRITE setMask NOTIFY maskChanged) public:explicit MyPropertyClass(Q…

MobileNet家族:从v1到v4的架构演进与发展历程

MobileNet 是一个专为移动设备和嵌入式系统设计的轻量化卷积神经网络&#xff08;CNN&#xff09;家族&#xff0c;旨在在资源受限的环境中实现高效的图像分类、对象检测和语义分割等任务。自 2017 年首次推出以来&#xff0c;MobileNet 经历了从 v1 到 v4 的多次迭代&#xff…

在 Windows 上使用 choco 安装 mkcert 并配置 Vue 运行HTTPS

解决在Windows上使用Vue本地运行HTTPS的问题,vue-cli或vite都可以使用 步骤 1&#xff1a;确认 Chocolatey 是否已安装 1. 检查 choco 命令是否可用 打开 PowerShell&#xff08;管理员权限&#xff09;&#xff0c;输入&#xff1a; choco -v如果显示版本号&#xff08;如…

【PHP】新版本特性记录(持续更新)

文章目录 前言PHP 7.01&#xff09;NULL合并运算符&#xff1a;??2&#xff09;参数、返回值支持类型声明3&#xff09;太空船操作符&#xff1a;<>4&#xff09;通过 define 定义常量数组5&#xff09;匿名类实例化6&#xff09;字符串里使用\u转义unicode codepoint …

【记】如何理解kotlin中的委托属性?

1. 什么是委托属性&#xff1f; 委托属性的核心思想是&#xff1a; 你可以将一个属性的 getter 和 setter 的逻辑交给一个外部对象&#xff08;称为委托对象&#xff09;来处理。这个外部对象负责存储属性的值&#xff0c;并提供自定义的 get 和 set 行为。 通过委托属性&am…

使用自动导入后,eslint报错 eslint9

前提&#xff1a;使用pnpm create vuelatest创建vue应用&#xff0c;并且在创建项目时就勾选eslint和prettier&#xff0c;不然有些配置还需要手动配&#xff0c;比如解决eslint和prettier的冲突问题 1. 解决使用自动导入后Eslint报错问题 配置vite.config.ts // 自动导入api…

springboot EasyExcel 实现导入导出

1. 添加依赖 确保 Maven 依赖中包含 EasyExcel 3.0.5&#xff1a; <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.0.5</version></dependency><!-- excel工具 --><dep…

实现悬浮按钮拖动,兼容h5和微信小程序

h5用js写&#xff0c;微信小程序用 代码里面没有完全实现吸附边缘的功能&#xff0c;需要吸附边缘的话还得自己再完善下&#xff08;h5的吸附边缘是可以的&#xff0c;小程序的还有点问题&#xff09; 主要功能是&#xff1a;图片上写文字的悬浮按钮&#xff0c;文字使用的是…

2、操作系统之软件基础

一、硬件支持系统 &#xff0c;系统管理硬件 操作系统核心功能可以分为&#xff1a; 守护者&#xff1a;对硬件和软件资源的管理协调者&#xff1a;通过机制&#xff0c;将各种各样的硬件资源适配给软件使用。 所以为了更好的管理硬件&#xff0c;操作系统引进了软件。其中3大…

17 | 实现简洁架构的 Biz 层

提示&#xff1a; 所有体系课见专栏&#xff1a;Go 项目开发极速入门实战课&#xff1b;欢迎加入 云原生 AI 实战 星球&#xff0c;12 高质量体系课、20 高质量实战项目助你在 AI 时代建立技术竞争力&#xff08;聚焦于 Go、云原生、AI Infra&#xff09;&#xff1b;本节课最终…

idea更新git代码报错No Git Roots

idea更新git代码报错&#xff1a; No Git Roots None of configured Git roots are under Git. The configured directory must have ".git directory in it.但是本地项目里是存在.git文件的&#xff0c;就是突然间不能更新代码了 然后尝试重新拉新项目代码提示: Git i…

Webpack 知识点整理

​ 1. 对 webpack 的理解&#xff1f;解决了什么问题&#xff1f; Webpack 是前端工程化领域的核心工具&#xff0c;其核心定位是模块打包器&#xff08;Module Bundler&#xff09;&#xff0c;通过将各类资源&#xff08;JS、CSS、图片等&#xff09;视为模块并进行智能整合…

[Hello-CTF]RCE-Labs超详细WP-Level13Level14(PHP下的0/1构造RCE命令简单的字数限制RCE)

Level 13 源码分析 这题又回到了 PHP重点关注preg_match("/[A-Za-z0-9\"%*,-.\/:;>?[\]^|]/", $cmd)禁用了所有数字, 并且回到了 PHP, 没办法用上一关的方法进行绕过但是比起上一关, 给我们少绕过了 &, ~, _似乎有其他方法 解题分析 利用 $(()) 和 …

Qt 控件概述 QWdiget 1.1

目录 qrc机制 qrc使用 1.在项目中创建一个 qrc 文件 2.将图片导入到qrc文件中 windowOpacity&#xff1a; cursor 光标 cursor类型 自定义Cursor font tooltip focusPolicy styleSheet qrc机制 之前提到使用相对路径的方法来存放资源&#xff0c;还有一种更好的方式…

【eNSP实战】将路由器配置为DHCP服务器

拓图 要求&#xff1a; 为 office100 和 office200 分别配置地址池 AR1接口配置 interface GigabitEthernet0/0/0ip address 192.168.100.1 255.255.255.0 # interface GigabitEthernet0/0/1ip address 192.168.200.1 255.255.255.0 AR1路由器上创建office100地址池 [AR1…

数据结构——顺序表seqlist

前言&#xff1a;大家好&#x1f60d;&#xff0c;本文主要介绍了数据结构——顺序表部分的内容 目录 一、线性表的定义 二、线性表的基本操作 三.顺序表 1.定义 2. 存储结构 3. 特点 四 顺序表操作 4.1初始化 4.2 插入 4.2.1头插 4.2.2 尾插 4.2.3 按位置插 4.3 …

OSPF | LSDB 链路状态数据库 / SPF 算法 / 实验

注&#xff1a;本文为 “OSPF | LSDB / SPF ” 相关文章合辑。 LSDB 和 SPF 算法 潇湘浪子的蹋马骨汤 发布 2019-02-15 23:58:46 1. 链路状态数据库 (LSDB) 链路状态协议除了执行洪泛扩散链路状态通告&#xff08;LSA&#xff09;以及发现邻居等任务外&#xff0c;其第三个任…

前端---CSS(前端三剑客)

1.基本语法规范 选择器 {⼀条/N条声明} • 选择器决定针对谁修改 (找谁) • 声明决定修改啥. (⼲啥) • 声明的属性是键值对. 使⽤ ; 区分键值对, 使⽤ : 区分键和值 比如&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta…

【C++】 —— 笔试刷题day_6

刷题day_6&#xff0c;继续加油哇&#xff01; 今天这三道题全是高精度算法 一、大数加法 题目链接&#xff1a;大数加法 题目解析与解题思路 OK&#xff0c;这道题题目描述很简单&#xff0c;就是给我们两个字符串形式的数字&#xff0c;让我们计算这两个数字的和 看题目我…

todolist docker 小工具

参考链接 前排提示 没有中文&#xff0c;可使用浏览器 翻译 前提 安装docker安装docker-compose 下载仓库 git clone https://github.com/JordanKnott/taskcafe进行安装 cd taskcafe docker-compose -p taskcafe up -d服务启动后会监听在 3333 端口上&#xff0c;通过浏览器…