基于Piecewise Jerk Speed Optimizer的速度规划算法(附ROS C++/Python仿真)

目录

  • 1 时空解耦运动规划
  • 2 PJSO速度规划原理
    • 2.1 优化变量
    • 2.2 代价函数
    • 2.3 约束条件
    • 2.4 二次规划形式
  • 3 算法仿真
    • 3.1 ROS C++仿真
    • 3.2 Python仿真

1 时空解耦运动规划

在自主移动系统的运动规划体系中,时空解耦的递进式架构因其高效性与工程可实现性被广泛采用。这一架构将复杂的高维运动规划问题分解为路径规划与速度规划两个层次化阶段:路径规划阶段基于静态环境约束生成无碰撞的几何轨迹;速度规划阶段则在此基础上引入时间维度,通过动态障碍物预测、运动学约束建模等为机器人或车辆赋予时间轴上的运动规律。这种解耦策略虽在理论上牺牲了时空联合优化的最优性,却通过分层降维大幅提升了复杂场景下的计算效率,使其成为自动驾驶、服务机器人等实时系统的经典方案。

在这里插入图片描述

2 PJSO速度规划原理

2.1 优化变量

分段加加速度优化(Piecewise Jerk Speed Optimizer, PJSO)算法是常用的纵向速度优化方式,核心原理是用三次多项式表示s-t图中每个时间区间 [ t k , t k + 1 ) \left[ t_k,t_{k+1} \right) [tk,tk+1)的速度曲线,并约束每个区间加加速度相等,其中 k = 0 , 1 , ⋯ , n − 2 k=0,1,\cdots ,n-2 k=0,1,,n2, 可取为路径规划的路点数量。PJSO算法的优化变量为

x = [ l s 0 s ˙ 0 s ¨ 0 ⋯ s k s ˙ k s ¨ k ⋯ s n − 1 s ˙ n − 1 s ¨ n − 1 ] 3 n × 1 T \boldsymbol{x}=\left[ \begin{matrix}{l} s_0& \dot{s}_0& \ddot{s}_0& \cdots& s_k& \dot{s}_k& \ddot{s}_k& \cdots& s_{n-1}& \dot{s}_{n-1}& \ddot{s}_{n-1}\\\end{matrix} \right] _{3n\times 1}^{T} x=[ls0s˙0s¨0sks˙ks¨ksn1s˙n1s¨n1]3n×1T

2.2 代价函数

代价函数可设计为

J = ∑ i = 0 n − 2 ( w s ( s i − s i , r e f ) 2 + w v ( s ˙ i − s ˙ i , r e f ) 2 + w a s ¨ i 2 + w j s i ( 3 ) 2 ) + w s , e n d ( s n − 1 − s e n d ) 2 + w v , e n d ( s ˙ n − 1 − s ˙ e n d ) 2 + w a , e n d ( s ¨ n − s ¨ e n d ) 2 J=\sum_{i=0}^{n-2}{\left( w_s\left( s_i-s_{i,\mathrm{ref}} \right) ^2+w_v\left( \dot{s}_i-\dot{s}_{i,\mathrm{ref}} \right) ^2+w_a\ddot{s}_{i}^{2}+w_j{s}_{i}^{(3)2} \right)}\\+w_{s,\mathrm{end}}\left( s_{n-1}-s_{\mathrm{end}} \right) ^2+w_{v,\mathrm{end}}\left( \dot{s}_{n-1}-\dot{s}_{\mathrm{end}} \right) ^2+w_{a,\mathrm{end}}\left( \ddot{s}_n-\ddot{s}_{\mathrm{end}} \right) ^2 J=i=0n2(ws(sisi,ref)2+wv(s˙is˙i,ref)2+was¨i2+wjsi(3)2)+ws,end(sn1send)2+wv,end(s˙n1s˙end)2+wa,end(s¨ns¨end)2

通过

s i ( 3 ) = s ¨ i + 1 − s ¨ i Δ t {s}_i^{(3)}=\frac{\ddot{s}_{i+1}-\ddot{s}_i}{\Delta t} si(3)=Δts¨i+1s¨i

隐式地消除加加速度变量,代入代价函数并消除常数项可化简为

J = w s ∑ i = 0 n − 2 s i 2 + w s , e n d s n − 1 2 − 2 w s ∑ i = 0 n − 2 s i , r e f s i − 2 w s , e n d s e n d s n − 1 + w v ∑ i = 0 n − 2 s ˙ i 2 + w v , e n d s ˙ n − 1 2 − 2 w v ∑ i = 0 n − 2 s ˙ i , r e f s ˙ i − 2 w v , e n d s ˙ e n d s ˙ n − 1 + ( w a + w j Δ t 2 ) s ¨ 0 2 + ( w a + w a , e n d + w j Δ t 2 ) s ¨ n − 1 2 − 2 w a , e n d s ¨ e n d s ¨ n − 1 + ( w a + 2 w j Δ t 2 ) ∑ i = 1 n − 2 s ¨ i 2 − 2 w j Δ t 2 ∑ i = 0 n − 2 s ¨ i s ¨ i + 1 \begin{aligned}J=&w_s\sum_{i=0}^{n-2}{s_{i}^{2}}+w_{s,\mathrm{end}}s_{n-1}^{2}-2w_s\sum_{i=0}^{n-2}{s_{i,\mathrm{ref}}s_i}-2w_{s,\mathrm{end}}s_{\mathrm{end}}s_{n-1}\\&+w_v\sum_{i=0}^{n-2}{\dot{s}_{i}^{2}}+w_{v,\mathrm{end}}\dot{s}_{n-1}^{2}-2w_v\sum_{i=0}^{n-2}{\dot{s}_{i,\mathrm{ref}}\dot{s}_i}-2w_{v,\mathrm{end}}\dot{s}_{\mathrm{end}}\dot{s}_{n-1}\\&+\left( w_a+\frac{w_j}{\Delta t^2} \right) \ddot{s}_{0}^{2}+\left( w_a+w_{a,\mathrm{end}}+\frac{w_j}{\Delta t^2} \right) \ddot{s}_{n-1}^{2}-2w_{a,\mathrm{end}}\ddot{s}_{\mathrm{end}}\ddot{s}_{n-1}\\&+\left( w_a+\frac{2w_j}{\Delta t^2} \right) \sum_{i=1}^{n-2}{\ddot{s}_{i}^{2}}-\frac{2w_j}{\Delta t^2}\sum_{i=0}^{n-2}{\ddot{s}_i\ddot{s}_{i+1}}\end{aligned} J=wsi=0n2si2+ws,endsn122wsi=0n2si,refsi2ws,endsendsn1+wvi=0n2s˙i2+wv,ends˙n122wvi=0n2s˙i,refs˙i2wv,ends˙ends˙n1+(wa+Δt2wj)s¨02+(wa+wa,end+Δt2wj)s¨n122wa,ends¨ends¨n1+(wa+Δt22wj)i=1n2s¨i2Δt22wji=0n2s¨is¨i+1

从而得到核矩阵

P = [ P s P s ˙ P s ¨ ] 3 n × 3 n \boldsymbol{P}=\left[ \begin{matrix} \boldsymbol{P}_s& & \\ & \boldsymbol{P}_{\dot{s}}& \\ & & \boldsymbol{P}_{\ddot{s}}\\\end{matrix} \right] _{3n\times 3n} P=PsPs˙Ps¨3n×3n

和偏置向量

q = [ − 2 w s s 0 , r e f ⋮ − 2 w s s n − 2 , r e f − 2 w s , e n d s e n d − 2 w v s ˙ 0 , r e f ⋮ − 2 w v s ˙ n − 2 , r e f − 2 w v , e n d s ˙ e n d 0 ⋮ 0 − 2 w a , e n d s ¨ e n d ] 3 n × 1 \boldsymbol{q}=\left[ \begin{array}{c} -2w_ss_{0,\mathrm{ref}}\\ \vdots\\ -2w_ss_{n-2,\mathrm{ref}}\\ -2w_{s,\mathrm{end}}s_{\mathrm{end}}\\ \hline -2w_v\dot{s}_{0,\mathrm{ref}}\\ \vdots\\ -2w_v\dot{s}_{n-2,\mathrm{ref}}\\ -2w_{v,\mathrm{end}}\dot{s}_{\mathrm{end}}\\ \hline 0\\ \vdots\\ 0\\ -2w_{a,\mathrm{end}}\ddot{s}_{\mathrm{end}}\\\end{array} \right] _{3n\times 1} q=2wss0,ref2wssn2,ref2ws,endsend2wvs˙0,ref2wvs˙n2,ref2wv,ends˙end002wa,ends¨end3n×1

2.3 约束条件

根据运动学公式可得运动学等式约束

{ s ˙ i + 1 = s ˙ i + s ¨ i Δ t + 1 2 j i Δ t 2 = s ˙ i + 1 2 s ¨ i Δ t + 1 2 s ¨ i + 1 Δ t s i + 1 = s i + s ˙ i Δ t + 1 2 s ¨ i Δ t 2 + 1 6 j i Δ t 3 = s i + s ˙ i Δ t + 1 3 s ¨ i Δ t 2 + 1 6 s ¨ i + 1 Δ t 3 \begin{cases} \dot{s}_{i+1}=\dot{s}_i+\ddot{s}_i\Delta t+\frac{1}{2}j_i\Delta t^2=\dot{s}_i+\frac{1}{2}\ddot{s}_i\Delta t+\frac{1}{2}\ddot{s}_{i+1}\Delta t\\ s_{i+1}=s_i+\dot{s}_i\Delta t+\frac{1}{2}\ddot{s}_i\Delta t^2+\frac{1}{6}j_i\Delta t^3=s_i+\dot{s}_i\Delta t+\frac{1}{3}\ddot{s}_i\Delta t^2+\frac{1}{6}\ddot{s}_{i+1}\Delta t^3\\\end{cases} {s˙i+1=s˙i+s¨iΔt+21jiΔt2=s˙i+21s¨iΔt+21s¨i+1Δtsi+1=si+s˙iΔt+21s¨iΔt2+61jiΔt3=si+s˙iΔt+31s¨iΔt2+61s¨i+1Δt3

约束初始状态

s ˙ 0 = s ˙ i n i t , s ˙ 0 = s ˙ i n i t , s ¨ 0 = s ¨ i n i t \dot{s}_0=\dot{s}_{\mathrm{init}}, \dot{s}_0=\dot{s}_{\mathrm{init}}, \ddot{s}_0=\ddot{s}_{\mathrm{init}} s˙0=s˙init,s˙0=s˙init,s¨0=s¨init

此外还需保证各阶状态量满足不等式约束

s min ⁡ ⩽ s i ⩽ s max ⁡ , s ˙ min ⁡ ⩽ s ˙ i ⩽ s ˙ max ⁡ , s ¨ min ⁡ ⩽ s ¨ i ⩽ s ¨ max ⁡ , s ¨ min ⁡ ( 3 ) Δ t ⩽ s ¨ i + 1 − s ¨ i ⩽ s ¨ max ⁡ ( 3 ) Δ t s_{\min}\leqslant s_i\leqslant s_{\max}, \dot{s}_{\min}\leqslant \dot{s}_i\leqslant \dot{s}_{\max}, \ddot{s}_{\min}\leqslant \ddot{s}_i\leqslant \ddot{s}_{\max}, \ddot{s}_{\min}^{(3)}\Delta t\leqslant \ddot{s}_{i+1}-\ddot{s}_i\leqslant \ddot{s}_{\max}^{(3)}\Delta t sminsismax,s˙mins˙is˙max,s¨mins¨is¨max,s¨min(3)Δts¨i+1s¨is¨max(3)Δt

从而得到约束矩阵

A = [ A i n i t , 3 × 3 n A b o u n d , 3 n + ( n − 1 ) × 3 n A s y s , 2 ( n − 1 ) × 3 n ] 6 n × 3 n , l = [ l i n i t l b o u n d l s y s ] 6 n × 1 , u = [ u i n i t u b o u n d u s y s ] 6 n × 1 \boldsymbol{A}=\left[ \begin{array}{c} \boldsymbol{A}_{\mathrm{init}, 3\times 3n}\\ \boldsymbol{A}_{\mathrm{bound}, 3n+\left( n-1 \right) \times 3n}\\ \boldsymbol{A}_{\mathrm{sys}, 2\left( n-1 \right) \times 3n}\\\end{array} \right] _{6n\times 3n}, \boldsymbol{l}=\left[ \begin{array}{c} \boldsymbol{l}_{\mathrm{init}}\\ \boldsymbol{l}_{\mathrm{bound}}\\ \boldsymbol{l}_{\mathrm{sys}}\\\end{array} \right] _{6n\times 1}, \boldsymbol{u}=\left[ \begin{array}{c} \boldsymbol{u}_{\mathrm{init}}\\ \boldsymbol{u}_{\mathrm{bound}}\\ \boldsymbol{u}_{\mathrm{sys}}\\\end{array} \right] _{6n\times 1} A=Ainit,3×3nAbound,3n+(n1)×3nAsys,2(n1)×3n6n×3n,l=linitlboundlsys6n×1,u=uinituboundusys6n×1

2.4 二次规划形式

综上所述,可得到PJSO算法的二次规划形式

min ⁡ x J = x T P x + q T x s . t . l ⩽ A x ⩽ u \min _{\boldsymbol{x}}J=\boldsymbol{x}^T\boldsymbol{Px}+\boldsymbol{q}^T\boldsymbol{x}\\\mathrm{s}.\mathrm{t}. \boldsymbol{l}\leqslant \boldsymbol{Ax}\leqslant \boldsymbol{u} xminJ=xTPx+qTxs.t.lAxu

3 算法仿真

3.1 ROS C++仿真

核心代码如下所示:

bool PiecewiseJerkVelocityPlanner::plan(const Points3d& waypoints, VelocityProfile& velocity_profile)
{int dim = static_cast<int>(waypoints.size());std::vector<double> s_ref(dim, 0.0);for (int i = 1; i < dim; ++i){s_ref[i] =s_ref[i - 1] + std::hypot(waypoints[i].x() - waypoints[i - 1].x(), waypoints[i].y() - waypoints[i - 1].y());}x_max_ = s_ref.back();// construct QP ProblemEigen::MatrixXd P, A;std::vector<c_float> l, u, q;_calKernel(dim, P);_calOffset(dim, s_ref, q);_calAffineConstraint(dim, A);_calBoundary(dim, s_ref, l, u);std::vector<c_float> P_data;std::vector<c_int> P_indices;std::vector<c_int> P_indptr;int ind_P = 0;for (int col = 0; col < P.cols(); ++col){P_indptr.push_back(ind_P);for (int row = 0; row <= col; ++row){P_data.push_back(P(row, col));P_indices.push_back(row);ind_P++;}}P_indptr.push_back(ind_P);std::vector<c_float> A_data;std::vector<c_int> A_indices;std::vector<c_int> A_indptr;int ind_A = 0;for (int col = 0; col < A.cols(); ++col){A_indptr.push_back(ind_A);for (int row = 0; row < A.rows(); ++row){double data = A(row, col);if (std::fabs(data) > kMathEpsilon){A_data.push_back(data);A_indices.push_back(row);++ind_A;}}}A_indptr.push_back(ind_A);// solveOSQPWorkspace* work = nullptr;OSQPData* data = reinterpret_cast<OSQPData*>(c_malloc(sizeof(OSQPData)));OSQPSettings* settings = reinterpret_cast<OSQPSettings*>(c_malloc(sizeof(OSQPSettings)));osqp_set_default_settings(settings);settings->verbose = false;settings->warm_start = true;data->n = 3 * dim;data->m = 6 * dim;data->P = csc_matrix(data->n, data->n, P_data.size(), P_data.data(), P_indices.data(), P_indptr.data());data->A = csc_matrix(data->m, data->n, A_data.size(), A_data.data(), A_indices.data(), A_indptr.data());data->q = q.data();data->l = l.data();data->u = u.data();osqp_setup(&work, data, settings);osqp_solve(work);auto status = work->info->status_val;if ((status < 0) || (status != 1 && status != 2)){R_DEBUG << "failed optimization status: " << work->info->status;return false;}// parsefor (int i = 0; i < dim; ++i){velocity_profile.push(dt_ * i, work->solution->x[i], work->solution->x[dim + i], work->solution->x[2 * dim + i]);}// Cleanuposqp_cleanup(work);c_free(data->A);c_free(data->P);c_free(data);c_free(settings);return true;
}

这里设置初始速度 v 0 = 1.0 m / s v_0=1.0\ m/s v0=1.0 m/s,初始加速度 a 0 = 0 m / s 2 a_0=0\ m/s^2 a0=0 m/s2;终点速度 v 0 = 0.0 m / s v_0=0.0\ m/s v0=0.0 m/s,终点加速度 a 0 = 0 m / s 2 a_0=0\ m/s^2 a0=0 m/s2

在这里插入图片描述

3.2 Python仿真

核心代码如下所示:

def process(self, path: List[Point3d]) -> List[Dict]:velocity_profiles = []path_segs, path_refs = PathPlanner.getPathSegments(path)for i, path_seg in enumerate(path_segs):s_ref = path_refs[i]n = max(len(path_refs[i]),round(self.r * (self.dx_max ** 2 + s_ref[-1] * self.ddx_max) \/ (self.dx_max * self.ddx_max * self.dt)))s_ref = np.linspace(0, s_ref[-1], n)'''min x^T P x + q^T xs.t. l <= Ax <= u'''P = sparse.csc_matrix(self.calKernel(n))q = self.calOffset(n, s_ref)A = sparse.csc_matrix(self.calAffineConstraint(n))l, u = self.calBoundary(n, s_ref)solver = osqp.OSQP()solver.setup(P, q, A, l, u, verbose=False)res = solver.solve()sol = res.xvelocity_profiles.append({"time": [self.dt * i for i in range(n)],"path": PathPlanner.pathInterpolation(path_seg, n),"distance": sol[:n].tolist(),"velocity": sol[n:2 * n].tolist(),"acceleration": sol[2 * n:3 * n].tolist(),})return velocity_profiles

对于如下图所示的倒车路径

在这里插入图片描述

规划的速度和加速度曲线如下所示,中间速度为0处为换挡点

在这里插入图片描述


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/81461.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2025云上人工智能安全发展研究

随着人工智能&#xff08;AI&#xff09;技术与云计算的深度融合&#xff0c;云上AI应用场景不断扩展&#xff0c;但安全挑战也日益复杂。结合2025年的技术演进与行业实践&#xff0c;云上AI安全发展呈现以下关键趋势与应对策略&#xff1a; 一、云上AI安全的主要挑战 数据泄露…

MCU裸机程序如何移植到RTOS?

目录 1、裸机编程 2、实时操作系统 3、移植裸机程序到RTOS的步骤 步骤1&#xff1a;分析裸机代码 步骤2&#xff1a;选择并设置RTOS环境 步骤3&#xff1a;设计任务架构 步骤4&#xff1a;实现任务间通信 步骤5&#xff1a;处理硬件交互 步骤6&#xff1a;测试和调试 …

LangPDF: Empowering Your PDFs with Intelligent Language Processing

LangPDF: Empowering Your PDFs with Intelligent Language Processing Unlock Global Communication: AI-Powered PDF Translation and Beyond In an interconnected world, seamless multilingual document management is not just an advantage—it’s a necessity. LangP…

什么是dom?作用是什么

DOM 的定义 DOM&#xff08;Document Object Model&#xff0c;文档对象模型&#xff09;是 HTML 和 XML 文档的编程接口。它将文档解析为一个由节点和对象组成的树状结构&#xff0c;允许开发者通过编程方式动态访问和操作文档的内容、结构和样式。 DOM 的作用 DOM 的主要作…

当AI自我纠错:一个简单的“Wait“提示如何让模型思考更深、推理更强

原论文&#xff1a;s1: Simple test-time scaling 作者&#xff1a;Niklas Muennighoff, Zitong Yang, Weijia Shi等&#xff08;斯坦福大学、华盛顿大学、Allen AI研究所、Contextual AI&#xff09; 论文链接&#xff1a;arXiv:2501.19393 代码仓库&#xff1a;GitHub - simp…

MYSQL之基本查询(CURD)

表的增删改查 表的增加 语法: INSERT [INTO] table_name [(column [, column] ...)] VALUES (value_list) [, (value_list)] ... value_list: value, [, value] ...全列插入和指定列插入 //创建一张学生表 CREATE TABLE students (id INT UNSIGNED PRIMARY KEY AUTO_INCREM…

STM32简易计算机设计

运用 A0上拉按钮和 A1 A2下拉按钮设计按键功能 加上独特的算法检测设计&#xff0c;先计算&#xff08;&#xff09;内在计算乘除在计算加减的值在计算乘除优先级最后计算加减优先级 #include "stm32f10x.h" #include <stdio.h> #include <stdlib.h>…

sparkSQL读入csv文件写入mysql

思路 示例 &#xff08;年龄>18改成>20) mysql的字符集问题 把user改成person “让字符集认识中文”

计算机视觉与深度学习 | Python 实现SO-CNN-BiLSTM多输入单输出回归预测(完整源码和源码详解)

SO-CNN-BiLSTM **一、代码实现****1. 环境准备****2. 数据生成(示例数据)****3. 数据预处理****4. 模型构建****5. 模型训练****6. 预测与评估****二、代码详解****1. 数据生成****2. 数据预处理****3. 模型架构****4. 训练配置****5. 结果可视化****三、关键参数说明****四、…

Windows软件插件-音视频捕获

下载本插件 音视频捕获就是获取电脑外接的话筒&#xff0c;摄像头&#xff0c;或线路输入的音频和视频。 本插件捕获电脑外接的音频和视频。最多可以同时获取4个视频源和4个音频源。插件可以在win32和MFC程序中使用。 使用方法 首先&#xff0c;加载本“捕获”DLL&#xff0c…

ios打包ipa获取证书和打包创建经验分享

在云打包或本地打包ios应用&#xff0c;打包成ipa格式的app文件的过程中&#xff0c;私钥证书和profile文件是必须的。 其实打包的过程并不难&#xff0c;因为像hbuilderx这些打包工具&#xff0c;只要你输入的是正确的证书&#xff0c;打包就肯定会成功。因此&#xff0c;证书…

CycleISP: Real Image Restoration via Improved Data Synthesis通过改进数据合成实现真实图像恢复

摘要 大规模数据集的可用性极大释放了深度卷积神经网络(CNN)的潜力。然而,针对单图像去噪问题,获取真实数据集成本高昂且流程繁琐。因此,图像去噪算法主要基于合成数据开发与评估,这些数据通常通过广泛假设的加性高斯白噪声(AWGN)生成。尽管CNN在合成数据集上表现优异…

《Python星球日记》 第70天:Seq2Seq 与Transformer Decoder

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 目录 一、Seq2Seq模型基础1. 什么是Seq2Seq模型?2. Encoder-Decoder架构详解1️⃣编码器(Encoder)2️⃣解码器(Decoder)3. 传统Seq2Seq模型的局限性…

Android 性能优化入门(二)—— 内存优化

1、概述 1.1 Java 对象的生命周期 各状态含义&#xff1a; 创建&#xff1a;分配内存空间并调用构造方法应用&#xff1a;使用中&#xff0c;处于被强引用持有&#xff08;至少一个&#xff09;的状态不可见&#xff1a;不被强引用持有&#xff0c;应用程序已经不再使用该对象…

GCC 版本与C++ 标准对应关系

GCC 版本 与支持的 C 标准&#xff08;C11、C14、C17、C20、C23&#xff09; 的对应关系 GCC 版本与 C 标准支持对照表 GCC 版本默认 C 标准C11C14C17C20C23GCC 4.8C98✅ (部分支持)❌❌❌❌GCC 4.9C98✅ (完整支持)❌❌❌❌GCC 5.1C98✅✅ (完整支持)❌❌❌GCC 6.1C14✅✅✅ …

5、事务和limit补充

一、事务【都是重点】 1、了解 一个事务其实就是一个完整的业务逻辑。 要么同时发生&#xff0c;要么同时结束。 是一个最小的工作单元。 不可再分。 看这个视频&#xff0c;黑马的&#xff0c;4分钟多点就能理解到 可以理解成&#xff1a; 开始事务-----如果中间抛出异常…

一套基于 Bootstrap 和 .NET Blazor 的开源企业级组件库

前言 今天大姚给大家分享一套基于 Bootstrap 和 .NET Blazor 的开源企业级组件库&#xff1a;Bootstrap Blazor。 项目介绍 BootstrapBlazor 是一套基于 Bootstrap 和 Blazor 的开源&#xff08;Apache License&#xff09;、企业级组件库&#xff0c;无缝整合了 Bootstrap …

mac-M系列芯片安装软件报错:***已损坏,无法打开。推出磁盘问题

因为你安装的软件在Intel 或arm芯片的mac上没有签名导致。 首先打开任何来源操作 在系统设置中配置&#xff0c;如下图&#xff1a; 2. 然后打开终端&#xff0c;输入&#xff1a; sudo spctl --master-disable然后输入电脑锁屏密码 打开了任何来源&#xff0c;还遇到已损坏…

RK3568-鸿蒙5.1与原生固件-扇区对比分析

编译生成的固件目录地址 ../openharmony/out/rk3568/packages/phone/images鸿蒙OS RK3568固件分析 通过查看提供的信息&#xff0c;分析RK3568开发板固件的各个组件及其用途&#xff1a; 主要固件组件 根据终端输出的文件列表&#xff0c;RK3568固件包含以下关键组件&#x…

Java正则表达式:从基础到高级应用全解析

Java正则表达式应用与知识点详解 一、正则表达式基础概念 正则表达式(Regular Expression)是通过特定语法规则描述字符串模式的工具&#xff0c;常用于&#xff1a; 数据格式验证文本搜索与替换字符串分割模式匹配提取 Java通过java.util.regex包提供支持&#xff0c;核心类…