分类问题 | 回归问题 | 聚类问题 | 各种复杂问题 |
---|---|---|---|
决策树√ | 线性回归√ | K-means√ | 神经网络√ |
逻辑回归√ | 岭回归 | 密度聚类 | 深度学习√ |
集成学习√ | Lasso回归 | 谱聚类 | 条件随机场 |
贝叶斯 | 层次聚类 | 隐马尔可夫模型 | |
支持向量机 | 高斯混合聚类 | LDA主题模型 |
一.神经网络原理概述
二.神经网络的训练方法
三.基于Keras实现神经网络
四.神经网络训练监控与可视化
分类问题 | 回归问题 | 聚类问题 | 各种复杂问题 |
---|---|---|---|
决策树√ | 线性回归√ | K-means√ | 神经网络√ |
逻辑回归√ | 岭回归 | 密度聚类 | 深度学习√ |
集成学习√ | Lasso回归 | 谱聚类 | 条件随机场 |
贝叶斯 | 层次聚类 | 隐马尔可夫模型 | |
支持向量机 | 高斯混合聚类 | LDA主题模型 |
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/80604.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!