PyTorch 深度学习实战(11):强化学习与深度 Q 网络(DQN)

在之前的文章中,我们介绍了神经网络、卷积神经网络(CNN)、循环神经网络(RNN)、Transformer 等多种深度学习模型,并应用于图像分类、文本分类、时间序列预测等任务。本文将介绍强化学习的基本概念,并使用 PyTorch 实现一个经典的深度 Q 网络(DQN)来解决强化学习中的经典问题——CartPole。

一、强化学习基础

强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它通过智能体(Agent)与环境(Environment)的交互来学习策略,以最大化累积奖励。强化学习的核心思想是通过试错来学习,智能体在环境中采取行动,观察结果,并根据奖励信号调整策略。

1. 强化学习的基本要素

  • 智能体(Agent):学习并做出决策的主体。

  • 环境(Environment):智能体交互的外部世界。

  • 状态(State):环境在某一时刻的描述。

  • 动作(Action):智能体在某一状态下采取的行动。

  • 奖励(Reward):智能体采取动作后,环境返回的反馈信号。

  • 策略(Policy):智能体在给定状态下选择动作的规则。

  • 价值函数(Value Function):评估在某一状态下采取某一动作的长期回报。

2. Q-Learning 与深度 Q 网络(DQN)

Q-Learning 是一种经典的强化学习算法,它通过学习一个 Q 函数来评估在某一状态下采取某一动作的长期回报。Q 函数的更新公式为:

深度 Q 网络(DQN)将 Q-Learning 与深度学习结合,使用神经网络来近似 Q 函数。DQN 通过经验回放(Experience Replay)和目标网络(Target Network)来稳定训练过程。

二、CartPole 问题实战

CartPole 是强化学习中的经典问题,目标是控制一个小车(Cart)使其上的杆子(Pole)保持直立。我们将使用 PyTorch 实现一个 DQN 来解决这个问题。

1. 问题描述

CartPole 环境的状态空间包括小车的位置、速度、杆子的角度和角速度。动作空间包括向左或向右移动小车。智能体每保持杆子直立一步,就会获得 +1 的奖励,当杆子倾斜超过一定角度或小车移动超出范围时,游戏结束。

2. 实现步骤

  1. 安装并导入必要的库。

  2. 定义 DQN 模型。

  3. 定义经验回放缓冲区。

  4. 定义 DQN 训练过程。

  5. 测试模型并评估性能。

3. 代码实现

import gym
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
from collections import deque
import matplotlib.pyplot as plt
​
# 设置 Matplotlib 支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置字体为 SimHei(黑体)
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题
​
# 1. 安装并导入必要的库
env = gym.make('CartPole-v1')
​
# 2. 定义 DQN 模型
class DQN(nn.Module):def __init__(self, state_size, action_size):super(DQN, self).__init__()self.fc1 = nn.Linear(state_size, 64)self.fc2 = nn.Linear(64, 64)self.fc3 = nn.Linear(64, action_size)
​def forward(self, x):x = torch.relu(self.fc1(x))x = torch.relu(self.fc2(x))x = self.fc3(x)return x
​
# 3. 定义经验回放缓冲区
class ReplayBuffer:def __init__(self, capacity):self.buffer = deque(maxlen=capacity)
​def push(self, state, action, reward, next_state, done):self.buffer.append((state, action, reward, next_state, done))
​def sample(self, batch_size):state, action, reward, next_state, done = zip(*random.sample(self.buffer, batch_size))return np.array(state), np.array(action), np.array(reward), np.array(next_state), np.array(done)
​def __len__(self):return len(self.buffer)
​
# 4. 定义 DQN 训练过程
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
model = DQN(state_size, action_size)
target_model = DQN(state_size, action_size)
target_model.load_state_dict(model.state_dict())
optimizer = optim.Adam(model.parameters(), lr=0.001)
buffer = ReplayBuffer(10000)
​
def train(batch_size, gamma=0.99):if len(buffer) < batch_size:returnstate, action, reward, next_state, done = buffer.sample(batch_size)state = torch.FloatTensor(state)next_state = torch.FloatTensor(next_state)action = torch.LongTensor(action)reward = torch.FloatTensor(reward)done = torch.FloatTensor(done)
​q_values = model(state)next_q_values = target_model(next_state)q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1)next_q_value = next_q_values.max(1)[0]expected_q_value = reward + gamma * next_q_value * (1 - done)
​loss = nn.MSELoss()(q_value, expected_q_value.detach())optimizer.zero_grad()loss.backward()optimizer.step()
​
# 5. 测试模型并评估性能
def test(env, model, episodes=10):total_reward = 0for _ in range(episodes):state = env.reset()done = Falsewhile not done:state = torch.FloatTensor(state).unsqueeze(0)action = model(state).max(1)[1].item()next_state, reward, done, _ = env.step(action)total_reward += rewardstate = next_statereturn total_reward / episodes
​
# 训练过程
episodes = 500
batch_size = 64
gamma = 0.99
epsilon = 1.0
epsilon_min = 0.01
epsilon_decay = 0.995
rewards = []
​
for episode in range(episodes):state = env.reset()done = Falsetotal_reward = 0
​while not done:if random.random() < epsilon:action = env.action_space.sample()else:state_tensor = torch.FloatTensor(state).unsqueeze(0)action = model(state_tensor).max(1)[1].item()
​next_state, reward, done, _ = env.step(action)buffer.push(state, action, reward, next_state, done)state = next_statetotal_reward += reward
​train(batch_size, gamma)
​epsilon = max(epsilon_min, epsilon * epsilon_decay)rewards.append(total_reward)
​if (episode + 1) % 50 == 0:avg_reward = test(env, model)print(f"Episode: {episode + 1}, Avg Reward: {avg_reward:.2f}")
​
# 6. 可视化训练结果
plt.plot(rewards)
plt.xlabel("Episode")
plt.ylabel("Total Reward")
plt.title("DQN 训练过程")
plt.show()

三、代码解析

  1. 环境与模型定义

    • 使用 gym 创建 CartPole 环境。

    • 定义 DQN 模型,包含三个全连接层。

  2. 经验回放缓冲区

    • 使用 deque 实现经验回放缓冲区,存储状态、动作、奖励等信息。

  3. 训练过程

    • 使用 epsilon-greedy 策略进行探索与利用。

    • 通过经验回放缓冲区采样数据进行训练,更新模型参数。

  4. 测试过程

    • 在测试环境中评估模型性能,计算平均奖励。

  5. 可视化

    • 绘制训练过程中的总奖励曲线。

四、运行结果

运行上述代码后,你将看到以下输出:

  • 训练过程中每 50 个 episode 打印一次平均奖励。

  • 训练结束后,绘制训练过程中的总奖励曲线。

五、总结

本文介绍了强化学习的基本概念,并使用 PyTorch 实现了一个深度 Q 网络(DQN)来解决 CartPole 问题。通过这个例子,我们学习了如何定义 DQN 模型、使用经验回放缓冲区、训练模型以及评估性能。

在下一篇文章中,我们将探讨更复杂的强化学习算法,如 Actor-Critic 和 Proximal Policy Optimization (PPO)。敬请期待!

代码实例说明

  • 本文代码可以直接在 Jupyter Notebook 或 Python 脚本中运行。

  • 如果你有 GPU,可以将模型和数据移动到 GPU 上运行,例如:model = model.to('cuda')state = state.to('cuda')

希望这篇文章能帮助你更好地理解强化学习的基础知识!如果有任何问题,欢迎在评论区留言讨论。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/72545.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

92.HarmonyOS NEXT开发学习路径与最佳实践总结:构建高质量应用

温馨提示&#xff1a;本篇博客的详细代码已发布到 git : https://gitcode.com/nutpi/HarmonyosNext 可以下载运行哦&#xff01; HarmonyOS NEXT开发学习路径与最佳实践总结&#xff1a;构建高质量应用 文章目录 HarmonyOS NEXT开发学习路径与最佳实践总结&#xff1a;构建高质…

HarmonyOS-应用程序框架基础

应用程序框架与应用模型的区别 应用框架可以看做是应用模型的一种实现方式&#xff0c;开发人员可以用应用模型来描述应用程序的结构和行为的描述&#xff0c;然后使用应用程序框架来实现这些描述。 应用模型 应用模型是一个应用程序的模型&#xff0c;它是一种抽象的描述&a…

审批工作流系统xFlow

WorkFlow-审批流程系统 该项目为完全开源免费项目 可用于学习或搭建初始化审批流程系统 希望有用的小伙伴记得点个免费的star gitee仓库地址 仿钉钉飞书工作审批流系统 介绍 前端技术栈: vue3 ts vite arcodesign eslint 后端技术栈:springbootspring mvc mybatis mavenmysq…

数据传输对象 DTO

1. DTO 数据传输对象&#xff08;DTO, Data Transfer Object&#xff09;是一种设计模式&#xff0c;用于在不同系统或应用层之间封装和传输数据。它通常用于解耦领域模型&#xff08;如数据库实体&#xff09;和外部接口&#xff08;如API请求/响应&#xff09;&#xff0c;避…

本地算力部署大模型详细流程(二)

1、前景回顾 上一篇我们通过ollama本地部署了一个DeepSeek&#xff0c;因为没有前端操作页面&#xff0c;我们只能使用cmd的方式和deepseek对话体验感并不是很好&#xff0c;下面我们通过Docker部署一个前端页面&#xff08;Open WebUI&#xff09; Open WebUI地址&#xff1a;…

django+vue3实现前后端大文件分片下载

效果&#xff1a; 大文件分片下载支持的功能&#xff1a; 展示目标文件信息提高下载速度&#xff1a;通过并发请求多个块&#xff0c;可以更有效地利用网络带宽断点续传&#xff1a;支持暂停后从已下载部分继续&#xff0c;无需重新开始错误恢复&#xff1a;单个块下载失败只…

matlab中如何集成使用python

在 MATLAB 中集成使用 Python 可以通过调用 Python 脚本或函数来实现。MATLAB 提供了 py 模块来直接调用 Python 代码。以下是一个简单的示例&#xff0c;展示如何在 MATLAB 中调用 Python 函数。 示例&#xff1a;在 MATLAB 中调用 Python 函数 1. 编写 Python 函数 首先&a…

ICMP、UDP以及IP、ARP报文包的仲裁处理

在之前的章节中&#xff0c;笔者就UDP、ICMP、IP、ARP、MAC层以及巨型帧等做了详细介绍以及代码实现及仿真&#xff0c;从本章节开始&#xff0c;笔者将就各个模块组合在一起&#xff0c;实现UDP协议栈的整体收发&#xff0c;在实现模块的整体组合之前&#xff0c;还需要考虑一…

【大模型学习】第十九章 什么是迁移学习

目录 1. 迁移学习的起源背景 1.1 传统机器学习的问题 1.2 迁移学习的提出背景 2. 什么是迁移学习 2.1 迁移学习的定义 2.2 生活实例解释 3. 技术要点与原理 3.1 迁移学习方法分类 3.1.1 基于特征的迁移学习(Feature-based Transfer) 案例说明 代码示例 3.1.2 基于…

基于大模型的分泌性中耳炎全流程预测与治疗管理研究报告

目录 一、引言 1.1 研究背景与意义 1.2 研究目的与目标 1.3 研究方法与创新点 二、分泌性中耳炎概述 2.1 疾病定义与特征 2.2 发病原因与机制 2.3 疾病危害与影响 三、大模型技术原理与应用现状 3.1 大模型基本原理 3.2 在医疗领域的应用案例 3.3 选择大模型预测分…

【NLP 38、实践 ⑩ NER 命名实体识别任务 Bert 实现】

去做具体的事&#xff0c;然后稳稳托举自己 —— 25.3.17 数据文件&#xff1a; 通过网盘分享的文件&#xff1a;Ner命名实体识别任务 链接: https://pan.baidu.com/s/1fUiin2um4PCS5i91V9dJFA?pwdyc6u 提取码: yc6u --来自百度网盘超级会员v3的分享 一、配置文件 config.py …

蓝桥杯学习-11栈

11栈 先进后出 例题–蓝桥19877 用数组来设置栈 1.向栈顶插入元素--top位置标记元素 2.删除栈顶元素--top指针减减 3.输出栈顶元素--输出top位置元素使用arraylist import java.util.ArrayList; import java.util.Scanner;public class Main {public static void main(Str…

Linux 蓝牙音频软件栈实现分析

Linux 蓝牙音频软件栈实现分析 蓝牙协议栈简介蓝牙控制器探测BlueZ 插件系统及音频插件蓝牙协议栈简介 蓝牙协议栈是实现蓝牙通信功能的软件架构,它由多个层次组成,每一层负责特定的功能。蓝牙协议栈的设计遵循蓝牙标准 (由蓝牙技术联盟,Bluetooth SIG 定义),支持多种蓝牙…

JetBrains(全家桶: IDEA、WebStorm、GoLand、PyCharm) 2024.3+ 2025 版免费体验方案

JetBrains&#xff08;全家桶: IDEA、WebStorm、GoLand、PyCharm&#xff09; 2024.3 2025 版免费体验方案 前言 JetBrains IDE 是许多开发者的主力工具&#xff0c;但从 2024.02 版本起&#xff0c;JetBrains 调整了试用政策&#xff0c;新用户不再享有默认的 30 天免费试用…

1.8PageTable

页表的作用 虚拟地址空间映射&#xff1a;页表记录了进程的虚拟页号到物理页号的映射关系。每个进程都有自己的页表&#xff0c;操作系统为每个进程维护一个独立的页表。内存管理&#xff1a;页表用于实现虚拟内存管理&#xff0c;支持进程的虚拟地址空间和物理地址空间之间的…

Prosys OPC UA Gateway:实现 OPC Classic 与 OPC UA 无缝连接

在工业自动化的数字化转型中&#xff0c;设备与系统之间的高效通信至关重要。然而&#xff0c;许多企业仍依赖于基于 COM/DCOM 技术的 OPC 产品&#xff0c;这给与现代化的 OPC UA 架构的集成带来了挑战。 Prosys OPC UA Gateway 正是为解决这一问题而生&#xff0c;它作为一款…

数据结构------线性表

一、线性表顺序存储详解 &#xff08;一&#xff09;线性表核心概念 1. 结构定义 // 数据元素类型 typedef struct person {char name[32];char sex;int age;int score; } DATATYPE;// 顺序表结构 typedef struct list {DATATYPE *head; // 存储空间基地址int tlen; …

【WPF】在System.Drawing.Rectangle中限制鼠标保持在Rectangle中移动?

方案一&#xff0c;在OnMouseMove方法限制 在WPF应用程序中&#xff0c;鼠标在移动过程中保持在这个矩形区域内&#xff0c;可以通过监听鼠标的移动事件并根据鼠标的当前位置调整其坐标来实现。不过需要注意的是&#xff0c;WPF原生使用的是System.Windows.Rect而不是System.D…

基于银河麒麟系统ARM架构安装达梦数据库并配置主从模式

达梦数据库简要概述 达梦数据库&#xff08;DM Database&#xff09;是一款由武汉达梦公司开发的关系型数据库管理系统&#xff0c;支持多种高可用性和数据同步方案。在主从模式&#xff08;也称为 Master-Slave 或 Primary-Secondary 模式&#xff09;中&#xff0c;主要通过…

系统思考全球化落地

感谢加密货币公司Bybit的再次邀请&#xff0c;为全球团队分享系统思考课程&#xff01;虽然大家来自不同国家&#xff0c;线上学习的形式依然让大家充满热情与互动&#xff0c;思维的碰撞不断激发新的灵感。 尽管时间存在挑战&#xff0c;但我看到大家的讨论异常积极&#xff…