已知椭圆 \(M:\dfrac{x^2}{3}+y^2=1\),斜率为 \(k\) 的直线 \(l\) 与椭圆 \(M\) 有两个不同的交点 \(A\),\(B\)。设 \(P(-2,0)\),直线 \(PA\) 与椭圆 \(M\) 的另一个交点为 \(C\),直线 \(PB\) 与椭圆 \(M\) 的另一个交点为 \(D\)。若 \(C\),\(D\) 和 \(Q\left(-\dfrac74,\dfrac14\right)\) 共线,求 \(k\)。
设 \(A(x_1,y_1)\),\(C(x_2,y_2)\),\(\overrightarrow{AP}=\lambda\overrightarrow{PC}\),则 \(x_P=\dfrac{x_1+\lambda x_2}{1+\lambda}=-2\),\(y_P=\dfrac{y_1+\lambda y_2}{1+\lambda}=0\)。
\[\dfrac{{x_1}^2}{3}+{y_1}^2=1
\]
\[\dfrac{\lambda^2{x_2}^2}{3}+\lambda^2{y_2}^2=\lambda^2
\]
\[\dfrac{(x_1-\lambda x_2)(x_1+\lambda x_2)}{3}+(y_1-\lambda y_2)(y_1+\lambda y_2)=(1+\lambda)(1-\lambda)
\]
\[\dfrac{(x_1-\lambda x_2)(x_1+\lambda x_2)}{3(1+\lambda)(1-\lambda)}+\dfrac{(y_1-\lambda y_2)(y_1+\lambda y_2)}{(1+\lambda)(1-\lambda)}=1
\]
\[\dfrac{-2(x_1-\lambda x_2)}{3(1-\lambda)}=1
\]
\[\begin{cases}x_1-\lambda x_2=\dfrac32 \lambda-\dfrac32\\x_1+\lambda x_2=-2-2\lambda\end{cases}
\]
\[\begin{cases}x_1=-\dfrac{\lambda}{4}-\dfrac74\\x_2=-\dfrac{1}{4\lambda}-\dfrac74\\y_2=-\dfrac{1}{\lambda} y_1\end{cases}
\]
设 \(B(x_3,y_3)\),\(D(x_4,y_4)\),\(\overrightarrow{BP}=\mu\overrightarrow{PD}\)。
同理,
\[\begin{cases}x_3=-\dfrac{\mu}{4}-\dfrac74\\x_4=-\dfrac{1}{4\mu}-\dfrac74\\y_4=-\dfrac{1}{\mu}y_3\end{cases}
\]
\[\dfrac{y_2-\frac14}{x_2+\frac74}=\dfrac{y_4-\frac14}{x_4+\frac74}
\]
\[\dfrac{-\frac{1}{\lambda}y_1-\frac14}{-\frac{1}{4\lambda}-\frac74+\frac74}=\dfrac{-\frac{1}{\mu}y_3-\frac14}{-\frac{1}{4\mu}-\frac74+\frac74}
\]
\[4y_1+\lambda=4y_3+\mu
\]
\[\dfrac{y_1-y_3}{\mu-\lambda}=\dfrac14
\]
\[k=\dfrac{y_1-y_3}{x_1-x_3}=\dfrac{y_1-y_3}{-\frac{\lambda}{4}-\frac74+\frac{\mu}{4}+\frac74}=\dfrac{4(y_1-y_3)}{\mu-\lambda}=1
\]