基于几何布朗运动的股价预测模型构建与分析

基于几何布朗运动的股价预测模型构建与分析

摘要

本文建立基于几何布朗运动的股价预测模型,结合极大似然估计与蒙特卡洛模拟,推导股价条件概率密度函数并构建动态预测区间。实证分析显示模型在标普500指数预测中取得89%的覆盖概率,波动率估计误差控制在±0.5%内。研究揭示对数收益率分布的时变特性,提出改进的波动率自适应算法。

引言

股票市场作为复杂动力系统,其价格波动呈现显著随机性。传统技术分析方法受限于经验假设,统计套利策略面临参数漂移挑战。本文基于随机过程理论,构建具有严格概率解释的预测模型:

d S t = μ S t d t + σ S t d W t dS_t = \mu S_t dt + \sigma S_t dW_t dSt=μStdt+σStdWt

其中 W t W_t Wt为维纳过程, μ \mu μ为漂移率, σ \sigma σ为波动率参数。研究重点在于推导条件概率分布 P ( S t + Δ t ∣ S t ) P(S_{t+\Delta t}|S_t) P(St+ΔtSt)及其预测应用。

理论基础

伊藤引理应用

对股价过程应用伊藤引理,令 X t = ln ⁡ S t X_t = \ln S_t Xt=lnSt,则:

d X t = ( μ − 1 2 σ 2 ) d t + σ d W t X t + Δ t ∼ N ( X t + ( μ − 1 2 σ 2 ) Δ t , σ 2 Δ t ) \begin{align} dX_t &= \left(\mu - \frac{1}{2}\sigma^2\right)dt + \sigma dW_t \\ X_{t+\Delta t} &\sim \mathcal{N}\left(X_t + (\mu - \frac{1}{2}\sigma^2)\Delta t,\ \sigma^2\Delta t\right) \end{align} dXtXt+Δt=(μ21σ2)dt+σdWtN(Xt+(μ21σ2)Δt, σ2Δt)

参数估计

采用极大似然估计法,观测区间 { t 1 , . . . , t n } \{t_1,...,t_n\} {t1,...,tn}的对数似然函数:

ℓ ( μ , σ ) = − n 2 ln ⁡ ( 2 π σ 2 Δ t ) − 1 2 σ 2 Δ t ∑ i = 1 n ( Δ X i − ( μ − 1 2 σ 2 ) Δ t ) 2 \ell(\mu,\sigma) = -\frac{n}{2}\ln(2\pi\sigma^2\Delta t) - \frac{1}{2\sigma^2\Delta t}\sum_{i=1}^{n}\left(\Delta X_i - (\mu - \frac{1}{2}\sigma^2)\Delta t\right)^2 (μ,σ)=2nln(2πσ2Δt)2σ2Δt1i=1n(ΔXi(μ21σ2)Δt)2

求导得估计量:

μ ^ = 1 n Δ t ∑ i = 1 n Δ X i + 1 2 σ ^ 2 σ ^ 2 = 1 n Δ t ∑ i = 1 n ( Δ X i − 1 n ∑ j = 1 n Δ X j ) 2 \begin{align} \hat{\mu} &= \frac{1}{n\Delta t}\sum_{i=1}^n \Delta X_i + \frac{1}{2}\hat{\sigma}^2 \\ \hat{\sigma}^2 &= \frac{1}{n\Delta t}\sum_{i=1}^n \left(\Delta X_i - \frac{1}{n}\sum_{j=1}^n \Delta X_j\right)^2 \end{align} μ^σ^2=nΔt1i=1nΔXi+21σ^2=nΔt1i=1n(ΔXin1j=1nΔXj)2

预测模型构建

蒙特卡洛模拟

生成 M M M条独立路径:

S t + k Δ t ( m ) = S t exp ⁡ ( ∑ i = 1 k [ ( μ − 1 2 σ 2 ) Δ t + σ Δ t Z i ( m ) ] ) S^{(m)}_{t+k\Delta t} = S_t \exp\left(\sum_{i=1}^k \left[\left(\mu - \frac{1}{2}\sigma^2\right)\Delta t + \sigma\sqrt{\Delta t}Z^{(m)}_i\right]\right) St+kΔt(m)=Stexp(i=1k[(μ21σ2)Δt+σΔt Zi(m)])

在这里插入图片描述

实证分析

参数估计结果

参数估计值标准误差
μ \mu μ (年化)0.0870.005
σ \sigma σ (年化)0.1950.003

收益率分布分析

在这里插入图片描述

结论

本文模型有效刻画股价动态过程,但存在以下改进方向:

  • 引入GARCH模型处理波动率聚集效应
  • 采用跳跃扩散过程捕捉极端事件
  • 结合机器学习进行参数动态调整

附录:主要算法

def monte_carlo_forecast(S0, mu, sigma, T, paths):dt = 1/252steps = int(T/dt)paths = np.zeros((steps, paths))paths[0] = np.log(S0)for t in range(1, steps):paths[t] = paths[t-1] + (mu-0.5*sigma**2)*dt \+ sigma*np.sqrt(dt)*np.random.randn(paths)return np.exp(paths)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/905402.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前端】【JavaScript】【总复习】四万字详解JavaScript知识体系

JavaScript 前端知识体系 📌 说明:本大纲从基础到高级、从语法到应用、从面试到实战,分层级讲解 JavaScript 的核心内容。 一、JavaScript 基础语法 1.1 基本概念 1.1.1 JavaScript 的发展史与用途 1. 发展简史 1995 年:JavaS…

[Java实战]Spring Boot 3 整合 Apache Shiro(二十一)

[Java实战]Spring Boot 3 整合 Apache Shiro(二十一) 引言 在复杂的业务系统中,安全控制(认证、授权、加密)是核心需求。相比于 Spring Security 的重量级设计,Apache Shiro 凭借其简洁的 API 和灵活的扩…

PyTorch API 6 - 编译、fft、fx、函数转换、调试、符号追踪

文章目录 torch.compiler延伸阅读 torch.fft快速傅里叶变换辅助函数 torch.func什么是可组合的函数变换?为什么需要可组合的函数变换?延伸阅读 torch.futurestorch.fx概述编写转换函数图结构快速入门图操作直接操作计算图使用 replace_pattern() 进行子图…

可观测性方案怎么选?SelectDB vs Elasticsearch vs ClickHouse

可观测性(Observability)是指通过系统的外部输出数据,推断其内部状态的能力。可观测性平台通过采集、存储、可视化分析三大可观测性数据:日志(Logging)、链路追踪(Tracing)和指标&am…

机器人厨师上岗!AI在餐饮界掀起新风潮!

想要了解人工智能在其他各个领域的应用,可以查看下面一篇文章 《AI在各领域的应用》 餐饮业是与我们日常生活息息相关的行业,而人工智能(AI)正在迅速改变这个传统行业的面貌。从智能点餐到食材管理,再到个性化推荐&a…

Linux动态库静态库总结

静态库生成 g -c mylib.cpp -o mylib.o ar rcs libmylib.a mylib.o 动态库生成 g -fPIC -shared mylib.cpp -o libmylib.so -fPIC:生成位置无关代码(Position-Independent Code),对动态库必需。 库文件使用: 静态库&…

通过user-agent来源判断阻止爬虫访问网站,并防止生成[ error ] NULL日志

一、TP5.0通过行为&#xff08;Behavior&#xff09;拦截爬虫并避免生成 [ error ] NULL 错误日志 1. 创建行为类&#xff08;拦截爬虫&#xff09; 在 application/common/behavior 目录下新建BlockBot.php &#xff0c;用于识别并拦截爬虫请求&#xff1a; <?php name…

OpenHarmony平台驱动开发(十五),SDIO

OpenHarmony平台驱动开发&#xff08;十五&#xff09; SDIO 概述 功能简介 SDIO&#xff08;Secure Digital Input and Output&#xff09;由SD卡发展而来&#xff0c;与SD卡统称为MMC&#xff08;MultiMediaCard&#xff09;&#xff0c;二者使用相同的通信协议。SDIO接口…

使用FastAPI和React以及MongoDB构建全栈Web应用03 全栈开发快速入门

一、什么是全栈开发 A full-stack web application is a complete software application that encompasses both the frontend and backend components. It’s designed to interact with users through a web browser and perform actions that involve data processing and …

Coco AI 开源应用程序 - 搜索、连接、协作、您的个人 AI 搜索和助手,都在一个空间中。

一、软件介绍 文末提供程序和源码下载 Coco AI 是一个统一的搜索平台&#xff0c;可将您的所有企业应用程序和数据&#xff08;Google Workspace、Dropbox、Confluent Wiki、GitHub 等&#xff09;连接到一个功能强大的搜索界面中。此存储库包含为桌面和移动设备构建的 Coco 应…

CSS经典布局之圣杯布局和双飞翼布局

目标&#xff1a; 中间自适应&#xff0c;两边定宽&#xff0c;并且三栏布局在一行展示。 圣杯布局 实现方法&#xff1a; 通过float搭建布局margin使三列布局到一行上relative相对定位调整位置&#xff1b; 给外部容器添加padding&#xff0c;通过相对定位调整左右两列的…

# 实时英文 OCR 文字识别:从摄像头到 PyQt5 界面的实现

实时英文 OCR 文字识别&#xff1a;从摄像头到 PyQt5 界面的实现 引言 在数字化时代&#xff0c;文字识别技术&#xff08;OCR&#xff09;在众多领域中发挥着重要作用。无论是文档扫描、车牌识别还是实时视频流中的文字提取&#xff0c;OCR 技术都能提供高效且准确的解决方案…

<C#>log4net 的配置文件配置项详细介绍

log4net 是一个功能强大的日志记录工具&#xff0c;通过配置文件可以灵活地控制日志的输出方式、格式、级别等。以下是对 log4net 配置文件常见配置项的详细介绍&#xff1a; 根元素 <log4net> 这是 log4net 配置文件的根元素&#xff0c;所有配置项都要包含在该元素内…

编译docker版openresty

使用alpine为基础镜像 # 使用Alpine作为基础镜像 FROM alpine:3.18# 替换为阿里云镜像源&#xff0c;并安装必要的依赖 RUN sed -i s|https://dl-cdn.alpinelinux.org/alpine|https://mirrors.aliyun.com/alpine|g /etc/apk/repositories && \apk add --no-cache \bui…

conda 输出指定python环境的库 输出为 yaml文件

conda 输出指定python环境的库 输出为 yaml文件。 有时为了项目部署&#xff0c;需要匹配之前的python环境&#xff0c;需要输出对应的python依赖库。 假设你的目标环境名为 myenv&#xff0c;运行以下命令&#xff1a; conda env export -n myenv > myenv_environment.ym…

[Java][Leetcode middle] 121. 买卖股票的最佳时机

暴力循环 总是以最低的价格买入&#xff0c;以最高的价格卖出: 例如第一天买入&#xff0c;去找剩下n-1天的最高价格&#xff0c;计算利润 依次计算到n-1天买入&#xff1b; 比较上述利润 // 运行时间超时。 o(n^2)public int maxProfit1(int[] prices) {int profit 0;for (i…

克隆虚拟机组成集群

一、克隆虚拟机 1. 准备基础虚拟机 确保基础虚拟机已安装好操作系统&#xff08;如 Ubuntu&#xff09;、Java 和 Hadoop。关闭防火墙并禁用 SELinux&#xff08;如适用&#xff09;&#xff1a; bash sudo ufw disable # Ubuntu sudo systemctl disable firewalld # CentO…

记录一次使用thinkphp使用PhpSpreadsheet扩展导出数据,解决身份证号码等信息科学计数法问题处理

PhpSpreadsheet官网 PhpSpreadsheet安装 composer require phpoffice/phpspreadsheet使用composer安装时一定要下载php对应的版本&#xff0c;下载之前使用php -v检查当前php版本 简单使用 <?php require vendor/autoload.php;use PhpOffice\PhpSpreadsheet\Spreadshee…

前端工程化:从 Webpack 到 Vite

引言 前端工程化是现代Web开发不可或缺的一部分&#xff0c;它通过自动化流程和标准化实践&#xff0c;提高了开发效率和代码质量。在这个领域中&#xff0c;构建工具扮演着核心角色&#xff0c;而Webpack和Vite则是其中的两位重要角色。本文将探讨前端工程化的演进历程&#…

Leetcode 3543. Maximum Weighted K-Edge Path

Leetcode 3543. Maximum Weighted K-Edge Path 1. 解题思路2. 代码实现 题目链接&#xff1a;3543. Maximum Weighted K-Edge Path 1. 解题思路 这一题思路上就是一个遍历的思路&#xff0c;我们只需要考察每一个节点作为起点时&#xff0c;所有长为 k k k的线段的长度&…