MCP协议,.Net 使用示例

服务器端示例

基础服务器

以下是一个基础的 MCP 服务器示例,它使用标准输入输出(stdio)作为传输方式,并实现了一个简单的回显工具:

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using ModelContextProtocol.Server;
using System.ComponentModel;namespace BasicMcpServer
{public class Program{public static async Task Main(string[] args){var builder = Host.CreateApplicationBuilder(args);// 配置日志输出到标准错误builder.Logging.AddConsole(consoleLogOptions =>{consoleLogOptions.LogToStandardErrorThreshold = LogLevel.Trace;});// 配置 MCP 服务器builder.Services.AddMcpServer().WithStdioServerTransport().WithToolsFromAssembly();await builder.Build().RunAsync();}}[McpServerToolType]public static class BasicTools{[McpServerTool, Description("Echoes the message back to the client.")]public static string Echo(string message) => $"You said: {message}";[McpServerTool, Description("Adds two numbers together.")]public static double Add([Description("First number to add")] double a, [Description("Second number to add")] double b) => a + b;[McpServerTool, Description("Gets the current date and time.")]public static string GetDateTime() => DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss");}
}

这个示例展示了如何创建一个基本的 MCP 服务器,它包含三个简单的工具:回显消息、加法计算和获取当前日期时间。

文件操作工具

以下是一个实现文件操作功能的 MCP 工具示例:

[McpServerToolType]
public static class FileTools
{[McpServerTool, Description("Reads the content of a text file.")]public static async Task ReadTextFile([Description("Path to the file to read")] string filePath,CancellationToken cancellationToken){if (!File.Exists(filePath)){throw new FileNotFoundException($"File not found: {filePath}");}return await File.ReadAllTextAsync(filePath, cancellationToken);}[McpServerTool, Description("Writes text content to a file.")]public static async Task WriteTextFile([Description("Path to the file to write")] string filePath,[Description("Content to write to the file")] string content,[Description("Whether to append to the file instead of overwriting")] bool append = false,CancellationToken cancellationToken = default){try{if (append){await File.AppendAllTextAsync(filePath, content, cancellationToken);}else{await File.WriteAllTextAsync(filePath, content, cancellationToken);}return $"Successfully wrote {content.Length} characters to {filePath}";}catch (Exception ex){return $"Error writing to file: {ex.Message}";}}[McpServerTool, Description("Lists files in a directory.")]public static string[] ListFiles([Description("Directory path to list files from")] string directoryPath,[Description("File pattern to match (e.g., *.txt)")] string pattern = "*.*"){if (!Directory.Exists(directoryPath)){throw new DirectoryNotFoundException($"Directory not found: {directoryPath}");}return Directory.GetFiles(directoryPath, pattern).Select(Path.GetFileName).ToArray();}
}

这个示例实现了三个文件操作工具:读取文本文件、写入文本文件和列出目录中的文件。这些工具可以帮助 AI 模型访问和操作本地文件系统。

Web 请求工具

以下是一个实现 Web 请求功能的 MCP 工具示例:

[McpServerToolType]
public static class WebTools
{[McpServerTool, Description("Fetches content from a URL.")]public static async Task FetchUrl(HttpClient httpClient,[Description("URL to fetch content from")] string url,CancellationToken cancellationToken){try{var response = await httpClient.GetAsync(url, cancellationToken);response.EnsureSuccessStatusCode();return await response.Content.ReadAsStringAsync(cancellationToken);}catch (Exception ex){return $"Error fetching URL: {ex.Message}";}}[McpServerTool, Description("Performs a web search and returns results.")]public static async Task WebSearch(HttpClient httpClient,[Description("Search query")] string query,[Description("Maximum number of results to return")] int maxResults = 5,CancellationToken cancellationToken = default){// 注意:这是一个示例实现,实际应用中应该使用真实的搜索 APIvar encodedQuery = Uri.EscapeDataString(query);var url = $"https://api.example.com/search?q={encodedQuery}&limit={maxResults}";try{var response = await httpClient.GetAsync(url, cancellationToken);response.EnsureSuccessStatusCode();var content = await response.Content.ReadAsStringAsync(cancellationToken);// 解析搜索结果(示例)return $"Search results for '{query}':\n{content}";}catch (Exception ex){return $"Error performing web search: {ex.Message}";}}[McpServerTool, Description("Posts data to a URL and returns the response.")]public static async Task PostToUrl(HttpClient httpClient,[Description("URL to post data to")] string url,[Description("JSON data to post")] string jsonData,CancellationToken cancellationToken){try{var content = new StringContent(jsonData, System.Text.Encoding.UTF8, "application/json");var response = await httpClient.PostAsync(url, content, cancellationToken);response.EnsureSuccessStatusCode();return await response.Content.ReadAsStringAsync(cancellationToken);}catch (Exception ex){return $"Error posting to URL: {ex.Message}";}}
}

这个示例实现了三个 Web 请求工具:获取 URL 内容、执行 Web 搜索和向 URL 发送 POST 请求。这些工具可以帮助 AI 模型访问互联网上的信息。

注册 HttpClient:

要使用上述 Web 工具,需要在服务配置中注册 HttpClient:

builder.Services.AddHttpClient();

数据库工具

以下是一个实现数据库操作功能的 MCP 工具示例(使用 Entity Framework Core):

// 数据库上下文
public class AppDbContext : DbContext
{public AppDbContext(DbContextOptions options) : base(options) { }public DbSet Products { get; set; }
}// 产品实体
public class Product
{public int Id { get; set; }public string Name { get; set; }public decimal Price { get; set; }public int Stock { get; set; }
}// 数据库工具
[McpServerToolType]
public class DatabaseTools
{private readonly AppDbContext _dbContext;public DatabaseTools(AppDbContext dbContext){_dbContext = dbContext;}[McpServerTool, Description("Gets a list of products.")]public async Task GetProducts([Description("Maximum number of products to return")] int limit = 10,CancellationToken cancellationToken = default){var products = await _dbContext.Products.Take(limit).ToListAsync(cancellationToken);return JsonSerializer.Serialize(products, new JsonSerializerOptions{WriteIndented = true});}[McpServerTool, Description("Searches for products by name.")]public async Task SearchProducts([Description("Product name to search for")] string name,CancellationToken cancellationToken = default){var products = await _dbContext.Products.Where(p => p.Name.Contains(name)).ToListAsync(cancellationToken);return JsonSerializer.Serialize(products, new JsonSerializerOptions{WriteIndented = true});}[McpServerTool, Description("Adds a new product.")]public async Task AddProduct([Description("Product name")] string name,[Description("Product price")] decimal price,[Description("Product stock")] int stock,CancellationToken cancellationToken = default){var product = new Product{Name = name,Price = price,Stock = stock};_dbContext.Products.Add(product);await _dbContext.SaveChangesAsync(cancellationToken);return $"Product added successfully with ID: {product.Id}";}
}

这个示例实现了三个数据库操作工具:获取产品列表、搜索产品和添加新产品。这些工具可以帮助 AI 模型访问和操作数据库。

注册数据库上下文:

要使用上述数据库工具,需要在服务配置中注册数据库上下文:

builder.Services.AddDbContext(options =>options.UseSqlite("Data Source=app.db"));// 注册数据库工具
builder.Services.AddTransient();

客户端示例

基础客户端

以下是一个基础的 MCP 客户端示例,它连接到 MCP 服务器并列出可用的工具:

using ModelContextProtocol.Client;
using ModelContextProtocol.Protocol.Transport;namespace BasicMcpClient
{public class Program{public static async Task Main(string[] args){// 解析命令行参数var (command, arguments) = GetCommandAndArguments(args);// 创建 MCP 客户端await using var mcpClient = await McpClientFactory.CreateAsync(new(){Id = "demo-server",Name = "Demo Server",TransportType = TransportTypes.StdIo,TransportOptions = new(){["command"] = command,["arguments"] = arguments,}});// 列出可用工具var tools = await mcpClient.ListToolsAsync();Console.WriteLine("Available tools:");foreach (var tool in tools){Console.WriteLine($"- {tool.Name}: {tool.Description}");if (tool.Parameters?.Any() == true){Console.WriteLine("  Parameters:");foreach (var param in tool.Parameters){Console.WriteLine($"  - {param.Name}: {param.Description} ({param.Type})");}}Console.WriteLine();}// 保持程序运行,等待用户输入Console.WriteLine("Press Enter to exit...");Console.ReadLine();}private static (string, string) GetCommandAndArguments(string[] args){// 解析命令行参数的逻辑// ...// 示例返回值return ("dotnet", "run --project ../BasicMcpServer/BasicMcpServer.csproj");}}
}

这个示例展示了如何创建一个基本的 MCP 客户端,连接到 MCP 服务器,并列出可用的工具及其参数。

工具发现与调用

以下是一个展示如何发现和调用 MCP 工具的示例:

// 连接到 MCP 服务器
await using var mcpClient = await McpClientFactory.CreateAsync(new()
{Id = "demo-server",Name = "Demo Server",TransportType = TransportTypes.StdIo,TransportOptions = new(){["command"] = command,["arguments"] = arguments,}
});// 列出可用工具
var tools = await mcpClient.ListToolsAsync();
Console.WriteLine($"Found {tools.Count} tools:");
foreach (var tool in tools)
{Console.WriteLine($"- {tool.Name}");
}// 调用 Echo 工具
Console.WriteLine("\nCalling Echo tool...");
var echoResult = await mcpClient.CallToolAsync("echo",new Dictionary() { ["message"] = "Hello MCP!" },CancellationToken.None);
Console.WriteLine($"Echo result: {echoResult.Content.First(c => c.Type == "text").Text}");// 调用 Add 工具
Console.WriteLine("\nCalling Add tool...");
var addResult = await mcpClient.CallToolAsync("add",new Dictionary() { ["a"] = 5, ["b"] = 7 },CancellationToken.None);
Console.WriteLine($"Add result: {addResult.Content.First(c => c.Type == "text").Text}");// 调用 GetDateTime 工具
Console.WriteLine("\nCalling GetDateTime tool...");
var dateTimeResult = await mcpClient.CallToolAsync("getDateTime",new Dictionary(),CancellationToken.None);
Console.WriteLine($"DateTime result: {dateTimeResult.Content.First(c => c.Type == "text").Text}");

这个示例展示了如何列出可用的 MCP 工具,并调用不同类型的工具,包括带参数和不带参数的工具。

错误处理

以下是一个展示如何处理 MCP 工具调用错误的示例:

try
{// 尝试调用不存在的工具var result = await mcpClient.CallToolAsync("nonExistentTool",new Dictionary(),CancellationToken.None);
}
catch (McpException ex)
{Console.WriteLine($"MCP Error: {ex.Message}");Console.WriteLine($"Error Code: {ex.Code}");Console.WriteLine($"Error Data: {ex.Data}");
}try
{// 尝试调用工具但缺少必要参数var result = await mcpClient.CallToolAsync("echo",new Dictionary(),  // 缺少 message 参数CancellationToken.None);
}
catch (McpException ex)
{Console.WriteLine($"MCP Error: {ex.Message}");
}try
{// 尝试调用工具但参数类型错误var result = await mcpClient.CallToolAsync("add",new Dictionary() { ["a"] = "not a number", ["b"] = 7 },CancellationToken.None);
}
catch (McpException ex)
{Console.WriteLine($"MCP Error: {ex.Message}");
}

这个示例展示了如何处理 MCP 工具调用中可能出现的各种错误,包括调用不存在的工具、缺少必要参数和参数类型错误。

LLM 集成示例

Claude 集成

以下是一个将 MCP 工具与 Claude 模型集成的示例:

using Anthropic.SDK;
using Microsoft.Extensions.AI;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using ModelContextProtocol.Client;
using ModelContextProtocol.Protocol.Transport;var builder = Host.CreateApplicationBuilder(args);
builder.Configuration.AddEnvironmentVariables().AddUserSecrets();// 创建 MCP 客户端
var (command, arguments) = GetCommandAndArguments(args);
await using var mcpClient = await McpClientFactory.CreateAsync(new()
{Id = "demo-server",Name = "Demo Server",TransportType = TransportTypes.StdIo,TransportOptions = new(){["command"] = command,["arguments"] = arguments,}
});// 获取可用工具
var tools = await mcpClient.ListToolsAsync();
Console.WriteLine($"Connected to server with {tools.Count} tools");// 创建 Claude 客户端
var anthropicClient = new AnthropicClient(new APIAuthentication(builder.Configuration["ANTHROPIC_API_KEY"])).Messages.AsBuilder().UseFunctionInvocation().Build();// 配置聊天选项
var options = new ChatOptions
{MaxOutputTokens = 1000,ModelId = "claude-3-5-sonnet-20240229",Tools = [.. tools]
};Console.WriteLine("Chat with Claude (type 'exit' to quit):");
while (true)
{Console.Write("> ");var query = Console.ReadLine();if (string.IsNullOrWhiteSpace(query) || query.Equals("exit", StringComparison.OrdinalIgnoreCase)){break;}// 使用 Claude 处理查询await foreach (var message in anthropicClient.GetStreamingResponseAsync(query, options)){Console.Write(message);}Console.WriteLine("\n");
}

这个示例展示了如何创建一个聊天应用,将 MCP 工具与 Claude 模型集成,使用户能够通过自然语言与 Claude 交互,而 Claude 能够使用 MCP 工具来完成任务。

OpenAI 集成

以下是一个将 MCP 工具与 OpenAI 模型集成的示例:

using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using ModelContextProtocol.Client;
using ModelContextProtocol.Protocol.Transport;
using OpenAI_API;
using OpenAI_API.Chat;
using System.Text.Json;var builder = Host.CreateApplicationBuilder(args);
builder.Configuration.AddEnvironmentVariables().AddUserSecrets();// 创建 MCP 客户端
var (command, arguments) = GetCommandAndArguments(args);
await using var mcpClient = await McpClientFactory.CreateAsync(new()
{Id = "demo-server",Name = "Demo Server",TransportType = TransportTypes.StdIo,TransportOptions = new(){["command"] = command,["arguments"] = arguments,}
});// 获取可用工具
var tools = await mcpClient.ListToolsAsync();
Console.WriteLine($"Connected to server with {tools.Count} tools");// 创建 OpenAI 客户端
var openAiApi = new OpenAIAPI(builder.Configuration["OPENAI_API_KEY"]);// 转换 MCP 工具为 OpenAI 工具格式
var openAiTools = tools.Select(tool => new OpenAI_API.Tool
{Type = "function",Function = new OpenAI_API.Function{Name = tool.Name,Description = tool.Description,Parameters = new{Type = "object",Properties = tool.Parameters?.ToDictionary(p => p.Name,p => new{Type = ConvertToJsonSchemaType(p.Type),Description = p.Description}) ?? new Dictionary(),Required = tool.Parameters?.Where(p => p.Required).Select(p => p.Name).ToArray() ?? Array.Empty()}}
}).ToList();// 创建聊天会话
var chat = openAiApi.Chat.CreateConversation();
chat.Model = "gpt-4o";
chat.RequestParameters.Tools = openAiTools;Console.WriteLine("Chat with GPT (type 'exit' to quit):");
while (true)
{Console.Write("> ");var query = Console.ReadLine();if (string.IsNullOrWhiteSpace(query) || query.Equals("exit", StringComparison.OrdinalIgnoreCase)){break;}// 添加用户消息chat.AppendUserInput(query);// 获取 GPT 响应var response = await chat.GetResponseFromChatbotAsync();Console.WriteLine(response);// 处理工具调用if (chat.ResponseParameters.ToolCalls?.Any() == true){foreach (var toolCall in chat.ResponseParameters.ToolCalls){if (toolCall.Type == "function"){Console.WriteLine($"\nCalling tool: {toolCall.Function.Name}");// 解析参数var parameters = JsonSerializer.Deserialize>(toolCall.Function.Arguments);// 调用 MCP 工具var result = await mcpClient.CallToolAsync(toolCall.Function.Name,parameters,CancellationToken.None);var resultText = result.Content.First(c => c.Type == "text").Text;Console.WriteLine($"Tool result: {resultText}");// 将工具结果添加到对话chat.AppendToolResult(resultText, toolCall.Id);}}// 获取 GPT 对工具结果的响应var finalResponse = await chat.GetResponseFromChatbotAsync();Console.WriteLine($"\nFinal response: {finalResponse}");}Console.WriteLine("\n");
}// 辅助方法:将 MCP 类型转换为 JSON Schema 类型
string ConvertToJsonSchemaType(string mcpType)
{return mcpType.ToLower() switch{"string" => "string","integer" => "integer","number" => "number","boolean" => "boolean","array" => "array","object" => "object",_ => "string"};
}

这个示例展示了如何创建一个聊天应用,将 MCP 工具与 OpenAI 的 GPT 模型集成,使用户能够通过自然语言与 GPT 交互,而 GPT 能够使用 MCP 工具来完成任务。

Semantic Kernel 集成

以下是一个将 MCP 工具与 Microsoft Semantic Kernel 集成的示例:

using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.SemanticKernel;
using ModelContextProtocol.Client;
using ModelContextProtocol.Protocol.Transport;var builder = Host.CreateApplicationBuilder(args);
builder.Configuration.AddEnvironmentVariables().AddUserSecrets();// 创建 MCP 客户端
var (command, arguments) = GetCommandAndArguments(args);
await using var mcpClient = await McpClientFactory.CreateAsync(new()
{Id = "demo-server",Name = "Demo Server",TransportType = TransportTypes.StdIo,TransportOptions = new(){["command"] = command,["arguments"] = arguments,}
});// 获取可用工具
var tools = await mcpClient.ListToolsAsync();
Console.WriteLine($"Connected to server with {tools.Count} tools");// 创建 Semantic Kernel
var kernel = Kernel.CreateBuilder().AddAzureOpenAIChatCompletion(deploymentName: builder.Configuration["AZURE_OPENAI_DEPLOYMENT_NAME"],endpoint: builder.Configuration["AZURE_OPENAI_ENDPOINT"],apiKey: builder.Configuration["AZURE_OPENAI_API_KEY"]).Build();// 注册 MCP 工具为 Semantic Kernel 函数
foreach (var tool in tools)
{kernel.ImportPluginFromObject(new McpToolWrapper(mcpClient, tool), tool.Name);
}// 创建聊天历史
var chatHistory = new ChatHistory();Console.WriteLine("Chat with Semantic Kernel (type 'exit' to quit):");
while (true)
{Console.Write("> ");var query = Console.ReadLine();if (string.IsNullOrWhiteSpace(query) || query.Equals("exit", StringComparison.OrdinalIgnoreCase)){break;}// 添加用户消息到聊天历史chatHistory.AddUserMessage(query);// 获取 AI 响应var response = await kernel.InvokePromptAsync(chatHistory.ToString());Console.WriteLine(response);// 添加 AI 响应到聊天历史chatHistory.AddAssistantMessage(response);Console.WriteLine("\n");
}// MCP 工具包装类
public class McpToolWrapper
{private readonly IMcpClient _mcpClient;private readonly McpTool _tool;public McpToolWrapper(IMcpClient mcpClient, McpTool tool){_mcpClient = mcpClient;_tool = tool;}[KernelFunction]public async Task ExecuteAsync(Dictionary parameters){var result = await _mcpClient.CallToolAsync(_tool.Name,parameters,CancellationToken.None);return result.Content.First(c => c.Type == "text").Text;}
}

这个示例展示了如何创建一个聊天应用,将 MCP 工具与 Microsoft Semantic Kernel 集成,使用户能够通过自然语言与 AI 交互,而 AI 能够使用 MCP 工具来完成任务。

应用场景

文档分析

以下是一个使用 MCP 工具进行文档分析的示例:

[McpServerToolType]
public static class DocumentTools
{[McpServerTool, Description("Analyzes a document and extracts key information.")]public static async Task AnalyzeDocument(HttpClient httpClient,[Description("URL of the document to analyze")] string documentUrl,[Description("Type of analysis to perform (summary, entities, sentiment)")] string analysisType = "summary",CancellationToken cancellationToken = default){try{// 下载文档var response = await httpClient.GetAsync(documentUrl, cancellationToken);response.EnsureSuccessStatusCode();var content = await response.Content.ReadAsStringAsync(cancellationToken);// 根据分析类型执行不同的分析return analysisType.ToLower() switch{"summary" => await GenerateSummary(content, cancellationToken),"entities" => await ExtractEntities(content, cancellationToken),"sentiment" => await AnalyzeSentiment(content, cancellationToken),_ => throw new ArgumentException($"Unsupported analysis type: {analysisType}")};}catch (Exception ex){return $"Error analyzing document: {ex.Message}";}}private static async Task GenerateSummary(string content, CancellationToken cancellationToken){// 实现文档摘要生成逻辑// 这里可以使用 NLP 库或调用外部 API// 示例实现var summary = $"Document summary (length: {content.Length} characters):\n";summary += "This is a placeholder for the actual document summary.";return summary;}private static async Task ExtractEntities(string content, CancellationToken cancellationToken){// 实现实体提取逻辑// 这里可以使用 NLP 库或调用外部 API// 示例实现var entities = "Extracted entities:\n";entities += "- Entity 1 (Person)\n";entities += "- Entity 2 (Organization)\n";entities += "- Entity 3 (Location)";return entities;}private static async Task AnalyzeSentiment(string content, CancellationToken cancellationToken){// 实现情感分析逻辑// 这里可以使用 NLP 库或调用外部 API// 示例实现var sentiment = "Sentiment analysis:\n";sentiment += "- Overall sentiment: Positive\n";sentiment += "- Confidence score: 0.85\n";sentiment += "- Key positive phrases: [...]\n";sentiment += "- Key negative phrases: [...]";return sentiment;}
}

这个示例展示了如何实现文档分析工具,包括生成摘要、提取实体和分析情感。这些工具可以帮助 AI 模型分析和理解文档内容。

数据处理

以下是一个使用 MCP 工具进行数据处理的示例:

[McpServerToolType]
public static class DataProcessingTools
{[McpServerTool, Description("Processes CSV data and performs analysis.")]public static async Task ProcessCsvData([Description("URL of the CSV file to process")] string csvUrl,[Description("Type of analysis to perform (stats, filter, transform)")] string analysisType = "stats",[Description("Additional parameters for the analysis (e.g., filter criteria)")] string parameters = "",CancellationToken cancellationToken = default){try{// 下载 CSV 文件using var httpClient = new HttpClient();var response = await httpClient.GetAsync(csvUrl, cancellationToken);response.EnsureSuccessStatusCode();var csvContent = await response.Content.ReadAsStringAsync(cancellationToken);// 解析 CSV 数据var data = ParseCsv(csvContent);// 根据分析类型执行不同的处理return analysisType.ToLower() switch{"stats" => CalculateStatistics(data),"filter" => FilterData(data, parameters),"transform" => TransformData(data, parameters),_ => throw new ArgumentException($"Unsupported analysis type: {analysisType}")};}catch (Exception ex){return $"Error processing CSV data: {ex.Message}";}}private static List> ParseCsv(string csvContent){var result = new List>();var lines = csvContent.Split('\n');if (lines.Length < 2){return result;}var headers = lines[0].Split(',').Select(h => h.Trim()).ToArray();for (int i = 1; i < lines.Length; i++){var line = lines[i].Trim();if (string.IsNullOrEmpty(line)){continue;}var values = line.Split(',').Select(v => v.Trim()).ToArray();var row = new Dictionary();for (int j = 0; j < Math.Min(headers.Length, values.Length); j++){row[headers[j]] = values[j];}result.Add(row);}return result;}private static string CalculateStatistics(List> data){if (data.Count == 0){return "No data to analyze.";}var result = "Data Statistics:\n";result += $"- Row count: {data.Count}\n";result += $"- Column count: {data[0].Count}\n";result += "- Columns: " + string.Join(", ", data[0].Keys);return result;}private static string FilterData(List> data, string parameters){// 解析过滤参数// 格式:column=valuevar filterParams = parameters.Split('=');if (filterParams.Length != 2){return "Invalid filter parameters. Format should be 'column=value'.";}var column = filterParams[0].Trim();var value = filterParams[1].Trim();// 应用过滤var filteredData = data.Where(row => row.ContainsKey(column) && row[column] == value).ToList();var result = $"Filtered data (where {column} = {value}):\n";result += $"- Matching rows: {filteredData.Count}\n\n";// 显示前 5 行for (int i = 0; i < Math.Min(5, filteredData.Count); i++){result += $"Row {i + 1}:\n";foreach (var kvp in filteredData[i]){result += $"  {kvp.Key}: {kvp.Value}\n";}result += "\n";}return result;}private static string TransformData(List> data, string parameters){// 解析转换参数// 格式:operation:columnvar transformParams = parameters.Split(':');if (transformParams.Length != 2){return "Invalid transform parameters. Format should be 'operation:column'.";}var operation = transformParams[0].Trim().ToLower();var column = transformParams[1].Trim();// 检查列是否存在if (data.Count > 0 && !data[0].ContainsKey(column)){return $"Column '{column}' not found in data.";}// 应用转换var result = $"Transformed data ({operation} on {column}):\n\n";switch (operation){case "uppercase":foreach (var row in data){if (row.ContainsKey(column)){row[column] = row[column].ToUpper();}}break;case "lowercase":foreach (var row in data){if (row.ContainsKey(column)){row[column] = row[column].ToLower();}}break;default:return $"Unsupported operation: {operation}";}// 显示前 5 行for (int i = 0; i < Math.Min(5, data.Count); i++){result += $"Row {i + 1}:\n";foreach (var kvp in data[i]){result += $"  {kvp.Key}: {kvp.Value}\n";}result += "\n";}return result;}
}

这个示例展示了如何实现数据处理工具,包括计算统计信息、过滤数据和转换数据。这些工具可以帮助 AI 模型处理和分析结构化数据。

代码生成

以下是一个使用 MCP 工具进行代码生成的示例:

[McpServerToolType]
public static class CodeGenerationTools
{[McpServerTool, Description("Generates code based on a description.")]public static string GenerateCode([Description("Description of the code to generate")] string description,[Description("Programming language (csharp, python, javascript)")] string language = "csharp",[Description("Additional options (e.g., framework, style)")] string options = ""){// 根据语言选择代码生成模板var codeTemplate = language.ToLower() switch{"csharp" => GenerateCSharpCode(description, options),"python" => GeneratePythonCode(description, options),"javascript" => GenerateJavaScriptCode(description, options),_ => throw new ArgumentException($"Unsupported language: {language}")};return codeTemplate;}private static string GenerateCSharpCode(string description, string options){// 这里应该实现实际的代码生成逻辑// 可以使用模板、规则或调用外部 API// 示例实现:生成一个简单的 C# 类var className = GetClassName(description);var code = $@"// Generated C# code based on: {description}
using System;
using System.Threading.Tasks;namespace GeneratedCode
{{public class {className}{{public {className}(){{// Constructor}}public void Execute(){{Console.WriteLine(""Executing {className}..."");// TODO: Implement based on description// {description}}}public async Task ExecuteAsync(){{Console.WriteLine(""Executing {className} asynchronously..."");// TODO: Implement based on description// {description}await Task.CompletedTask;}}}}
}}";return code;}private static string GeneratePythonCode(string description, string options){// 示例实现:生成一个简单的 Python 类var className = GetClassName(description);var code = $@"# Generated Python code based on: {description}
import asyncioclass {className}:def __init__(self):# Constructorpassdef execute(self):print(f'Executing {className}...')# TODO: Implement based on description# {description}async def execute_async(self):print(f'Executing {className} asynchronously...')# TODO: Implement based on description# {description}await asyncio.sleep(0)# Usage example
if __name__ == '__main__':obj = {className}()obj.execute()# Async usage# asyncio.run(obj.execute_async())";return code;}private static string GenerateJavaScriptCode(string description, string options){// 示例实现:生成一个简单的 JavaScript 类var className = GetClassName(description);var code = $@"// Generated JavaScript code based on: {description}
class {className} {{constructor() {{// Constructor}}execute() {{console.log('Executing {className}...');// TODO: Implement based on description// {description}}}async executeAsync() {{console.log('Executing {className} asynchronously...');// TODO: Implement based on description// {description}await Promise.resolve();}}
}}// Usage example
const obj = new {className}();
obj.execute();// Async usage
// obj.executeAsync().then(() => console.log('Done'));";return code;}private static string GetClassName(string description){// 从描述中提取类名// 这里使用一个简单的启发式方法var words = description.Split(' ').Where(w => !string.IsNullOrEmpty(w)).Select(w => char.ToUpper(w[0]) + w.Substring(1).ToLower()).ToArray();return string.Join("", words).Replace(".", "").Replace(",", "");}
}

这个示例展示了如何实现代码生成工具,可以根据描述生成不同编程语言的代码。这些工具可以帮助 AI 模型生成可执行的代码示例。

自动化任务

以下是一个使用 MCP 工具进行自动化任务的示例:

[McpServerToolType]
public class AutomationTools
{private readonly ILogger _logger;public AutomationTools(ILogger logger){_logger = logger;}[McpServerTool, Description("Schedules a task to run at a specified time.")]public string ScheduleTask([Description("Description of the task to schedule")] string taskDescription,[Description("When to run the task (format: yyyy-MM-dd HH:mm:ss)")] string scheduledTime,[Description("Whether to repeat the task daily")] bool repeatDaily = false){try{// 解析时间if (!DateTime.TryParse(scheduledTime, out var scheduleDateTime)){return $"Invalid date/time format: {scheduledTime}. Please use yyyy-MM-dd HH:mm:ss format.";}// 检查时间是否在未来if (scheduleDateTime <= DateTime.Now){return "Scheduled time must be in the future.";}// 记录任务信息_logger.LogInformation($"Task scheduled: {taskDescription}");_logger.LogInformation($"Scheduled time: {scheduleDateTime}");_logger.LogInformation($"Repeat daily: {repeatDaily}");// 在实际应用中,这里应该将任务添加到调度系统// 例如使用 Quartz.NET 或其他任务调度库return $"Task scheduled successfully:\n" +$"- Description: {taskDescription}\n" +$"- Scheduled time: {scheduleDateTime}\n" +$"- Repeat daily: {repeatDaily}";}catch (Exception ex){_logger.LogError(ex, "Error scheduling task");return $"Error scheduling task: {ex.Message}";}}[McpServerTool, Description("Runs a command on the server.")]public async Task RunCommand([Description("Command to run")] string command,[Description("Working directory for the command")] string workingDirectory = "",[Description("Timeout in seconds (0 for no timeout)")] int timeoutSeconds = 60,CancellationToken cancellationToken = default){try{_logger.LogInformation($"Running command: {command}");// 设置工作目录var workDir = string.IsNullOrEmpty(workingDirectory)? Directory.GetCurrentDirectory(): workingDirectory;// 检查工作目录是否存在if (!Directory.Exists(workDir)){return $"Working directory does not exist: {workDir}";}// 创建进程启动信息var processStartInfo = new ProcessStartInfo{FileName = "cmd.exe",Arguments = $"/c {command}",WorkingDirectory = workDir,RedirectStandardOutput = true,RedirectStandardError = true,UseShellExecute = false,CreateNoWindow = true};// 启动进程using var process = new Process { StartInfo = processStartInfo };process.Start();// 设置超时var timeoutTask = timeoutSeconds > 0? Task.Delay(timeoutSeconds * 1000, cancellationToken): Task.Delay(-1, cancellationToken);// 读取输出var outputTask = process.StandardOutput.ReadToEndAsync();var errorTask = process.StandardError.ReadToEndAsync();// 等待进程完成或超时var completedTask = await Task.WhenAny(Task.Run(() => process.WaitForExit(), cancellationToken),timeoutTask);// 检查是否超时if (completedTask == timeoutTask && !process.HasExited){process.Kill();return $"Command timed out after {timeoutSeconds} seconds.";}// 获取输出var output = await outputTask;var error = await errorTask;// 返回结果return string.IsNullOrEmpty(error)? $"Command executed successfully:\n{output}": $"Command executed with errors:\n{error}\n\nOutput:\n{output}";}catch (Exception ex){_logger.LogError(ex, "Error running command");return $"Error running command: {ex.Message}";}}[McpServerTool, Description("Monitors a file or directory for changes.")]public string MonitorFileChanges([Description("Path to file or directory to monitor")] string path,[Description("Types of changes to monitor (Created, Deleted, Changed, Renamed)")] string changeTypes = "Created,Deleted,Changed,Renamed",[Description("Whether to include subdirectories")] bool includeSubdirectories = true){try{// 检查路径是否存在if (!File.Exists(path) && !Directory.Exists(path)){return $"Path does not exist: {path}";}// 解析变更类型var watcherChangeTypes = ParseChangeTypes(changeTypes);// 创建文件系统监视器var watcher = new FileSystemWatcher{Path = Directory.Exists(path) ? path : Path.GetDirectoryName(path),Filter = Directory.Exists(path) ? "*.*" : Path.GetFileName(path),NotifyFilter = NotifyFilters.LastWrite | NotifyFilters.FileName | NotifyFilters.DirectoryName,IncludeSubdirectories = includeSubdirectories};// 设置事件处理程序watcher.Changed += (sender, e) => _logger.LogInformation($"File changed: {e.FullPath}");watcher.Created += (sender, e) => _logger.LogInformation($"File created: {e.FullPath}");watcher.Deleted += (sender, e) => _logger.LogInformation($"File deleted: {e.FullPath}");watcher.Renamed += (sender, e) => _logger.LogInformation($"File renamed: {e.OldFullPath} to {e.FullPath}");// 启动监视器watcher.EnableRaisingEvents = true;// 在实际应用中,应该将监视器存储在某个地方,以便以后可以停止它return $"File monitoring started:\n" +$"- Path: {path}\n" +$"- Change types: {changeTypes}\n" +$"- Include subdirectories: {includeSubdirectories}";}catch (Exception ex){_logger.LogError(ex, "Error monitoring file changes");return $"Error monitoring file changes: {ex.Message}";}}private static NotifyFilters ParseChangeTypes(string changeTypes){var result = NotifyFilters.LastWrite;foreach (var type in changeTypes.Split(',').Select(t => t.Trim())){result |= type.ToLower() switch{"created" => NotifyFilters.FileName | NotifyFilters.DirectoryName,"deleted" => NotifyFilters.FileName | NotifyFilters.DirectoryName,"changed" => NotifyFilters.LastWrite,"renamed" => NotifyFilters.FileName | NotifyFilters.DirectoryName,_ => NotifyFilters.LastWrite};}return result;}
}

这个示例展示了如何实现自动化任务工具,包括调度任务、运行命令和监控文件变更。这些工具可以帮助 AI 模型自动化各种系统任务。

结论

本文档提供了丰富的 .NET MCP 示例,涵盖了服务器端实现、客户端实现、LLM 集成和各种应用场景。这些示例可以帮助开发者快速上手 MCP,并将其应用到实际项目中。

MCP 的强大之处在于它提供了一种标准化的方式,使 AI 模型能够安全地访问和操作各种数据源和工具。通过实现 MCP 服务器和客户端,开发者可以创建功能丰富的 AI 应用,使 AI 能够执行各种任务,从简单的文本处理到复杂的自动化操作。

随着 MCP 生态系统的不断发展,我们可以期待更多的功能和改进。官方的 C# SDK 提供了一个稳定的基础,使 .NET 开发者能够轻松地实现 MCP 服务器和客户端。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/901683.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智能语音处理+1.5使用PocketSphinxshinx实现语音转文本(100%教会)

欢迎来到智能语音处理系列的最后一篇文章&#xff0c;到这里,基本上语音处理是没问题了. 第一篇:智能语音处理1.1下载需要的库(100%实现)-CSDN博客 第二篇:智能语音识别1.2用SAPI实现文本转语音(100%教会)-CSDN博客 第三篇:智能语音处理1.3用SpeechLib实现文本转语音(100%教会)…

Kubernetes 节点摘除指南

目录 一、安全摘除节点的标准流程 1. 确认节点名称及状态 2. 标记节点为不可调度 3. 排空&#xff08;Drain&#xff09;节点 4. 删除节点 二、验证节点是否成功摘除 1. 检查节点列表 2. 检查节点详细信息 3. 验证 Pod 状态 三、彻底清理节点&#xff08;可选&#xf…

信息安全管理与评估2021年国赛正式卷答案截图以及十套国赛卷

2021年全国职业院校技能大赛高职组 “信息安全管理与评估”赛项 任务书1 赛项时间 共计X小时。 赛项信息 赛项内容 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 第一阶段 平台搭建与安全设备配置防护 任务1 网络平台搭建 任务2 网络安全设备配置与防护 第二…

3D语义地图中的全局路径规划!iPPD:基于3D语义地图的指令引导路径规划视觉语言导航

作者&#xff1a; Zehao Wang, Mingxiao Li, Minye Wu, Marie-Francine Moens, Tinne Tuytelaars 单位&#xff1a;鲁汶大学电气工程系&#xff0c;鲁汶大学计算机科学系 论文标题&#xff1a; Instruction-guided path planning with 3D semantic maps for vision-language …

《AI大模型应知应会100篇》第20篇:大模型伦理准则与监管趋势

第20篇&#xff1a;大模型伦理准则与监管趋势 摘要 随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;尤其是大模型&#xff08;如GPT、PaLM等&#xff09;在自然语言处理、图像生成等领域的广泛应用&#xff0c;AI伦理问题和监管挑战日益凸显。本文将梳理当…

【Ai】dify:Linux环境安装 dify 详细步骤

一、什么是dify Dify 是一个 开源的大语言模型(LLM)应用开发平台,旨在帮助开发者快速构建基于 AI 的应用程序,例如智能对话助手、知识库问答、内容生成工具等。它提供了可视化的流程编排、模型集成、数据管理等功能,降低了开发门槛,支持快速迭代和部署。 核心功能与特点…

CentOS 操作系统下搭建 tsung性能测试环境

写在前面 为何这么安装,实际就是这么做的,这是经过好几次实践得出的经验总结。 这为了让大家更清楚的知道怎么安装 tsung性能测试环境,按步照搬的安装即可。 步骤 1、 下载软件安装包 CentOS-6.0-x86_64-bin-DVD1.iso jdk-6u4-linux-x64-rpm.bin erlang: otp_src_1…

Vulkanised

Vulkanised 1. About VulkanisedReferences The Premier Vulkan Developer Conference premier /ˈpremiə(r)/ n. 总理&#xff1b;(尤用于报章等) 首相&#xff1b;(加拿大的) 省总理&#xff1b;地区总理 adj. 第一的&#xff1b;首要的&#xff1b;最著名的&#xff1b;最…

C++之 动态数组

一、新建一个动态数组 数组名和下标操作符[]的组合可以被替换成一个指向该数组的基地址的指针和对应的指针运算&#xff1a; int a[20]; int *x a; 指针变量 x 指向数组 a 的地址&#xff0c; a[0] 和 *x 都代表数组的第一个元素。 于是&#xff0c;根据指针运算原则&…

ubuntu1804服务器开启ftp,局域网共享特定文件给匿名用户

要在 Ubuntu 18.04 上设置一个 FTP 服务器&#xff0c;满足以下要求&#xff1a; 允许匿名登录&#xff08;无需账号密码&#xff09;。指定分享特定目录下的文件。只允许只读下载。 可以使用 vsftpd&#xff08;Very Secure FTP Daemon&#xff09;来实现。以下是详细步骤&a…

mcp和API区别

MCP&#xff08;Model Context Protocol&#xff0c;模型上下文协议&#xff09;与传统API&#xff08;Application Programming Interface&#xff0c;应用程序编程接口&#xff09;在技术架构、集成方式和应用场景等方面存在显著差异&#xff0c;以下是主要区别的总结&#x…

高版本Android (AIDL HAL) 使用HIDL方法

目录 修改步骤和编译方法 注意事项 Android 11 引入了使用 AIDL 实现 HAL 的功能。 后续Android新版本,HAL默认切到了使用AIDL. 因此当导入旧HIDL实现方式时,需要做一些修改。 1.将HAL HIDL模块拷贝到相应目录,进行编译 source build/envsetup.sh lunch xxx mmm 模块路径 1.…

基于redis 实现我的收藏功能优化详细设计方案

基于redis 实现我的收藏功能优化详细设计方案 一、架构设计 +---------------------+ +---------------------+ | 客户端请求 | | 数据存储层 | | (收藏列表查询) | | (Redis Cluster) | +-------------------…

学习笔记 - Swfit 6.1 - 语法概览

获取版本号 swift -versionHello world print("Hello, world!")末尾不需要分号 值 常量(let),变量(var) var myVariable 42 myVariable 50 let myConstant 42可以显式声明变量类型,若没有则隐式推断,类似下面的Double let implicitInteger 70 let implicit…

确保连接器后壳高性能互连的完整性

本文探讨了现代后壳技术如何促进高性能互连的电气和机械完整性&#xff0c;以及在规范阶段需要考虑的一些关键因素。 当今的航空航天、国防和医疗应用要求连接器能够提供高速和紧凑的互连&#xff0c;能够承受振动和冲击&#xff0c;并保持对电磁和射频干扰 &#xff08;EMI/R…

第IV部分有效应用程序的设计模式

第IV部分有效应用程序的设计模式 第IV部分有效应用程序的设计模式第23章:应用程序用户界面的架构设计23.1设计考量23.2示例1:用于非分布式有界上下文的一个基于HTMLAF的、服务器端的UI23.3示例2:用于分布式有界上下文的一个基于数据API的客户端UI23.4要点第24章:CQRS:一种…

学习笔记十四——一文看懂 Rust 迭代器

&#x1f300; 一文看懂 Rust 迭代器 &#x1f4da; 目录导航 什么是迭代器&#xff1f;为什么 Rust 到处都在用它&#xff1f;Rust 迭代器的底层逻辑是什么&#xff1f;适配器 vs 消费者&#xff1a;谁是主角&#xff1f;常见适配器&#xff1a;加工数据的全能工厂常见消费者…

QR轻量二维码生成系统PHP源码

源码介绍 基于PHP编写的二维码在线生成系统。只需点击几下就可以生成您的个人二维码&#xff01;上传您的徽标&#xff0c;选择自定义颜色&#xff0c;生成多种类型。选择一个图案并下载最终的qrcode。可用格式&#xff1a;.png&#xff0c;.svg 效果预览 源码获取 QR轻量二…

基于Spring MVC的客户端真实IP获取方案解析

文章目录 基于Spring MVC的客户端真实IP获取方案解析概述核心方法解析代码实现工作流程 IP获取优先级策略IP有效性验证异常处理与日志使用场景注意事项扩展建议 基于Spring MVC的客户端真实IP获取方案解析 概述 在Web应用开发中&#xff0c;准确获取客户端真实IP地址是常见的…

Idea集成AI:CodeGeeX开发

当入职新公司&#xff0c;或者调到新项目组进行开发时&#xff0c;需要快速熟悉项目代码 而新的项目代码&#xff0c;可能有很多模块&#xff0c;很多的接口&#xff0c;很复杂的业务逻辑&#xff0c;更加有与之前自己的代码风格不一致的现有复杂代码 更别提很多人写代码不喜…