这是基于代码随想录的每日打卡
参加科学大会(第六期模拟笔试)
题目描述
小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。
小明的起点是第一个车站,终点是最后一个车站。然而,途中的各个车站之间的道路状况、交通拥堵程度以及可能的自然因素(如天气变化)等不同,这些因素都会影响每条路径的通行时间。
小明希望能选择一条花费时间最少的路线,以确保他能够尽快到达目的地。
输入描述
第一行包含两个正整数,第一个正整数 N 表示一共有 N 个公共汽车站,第二个正整数 M 表示有 M 条公路。
接下来为 M 行,每行包括三个整数,S、E 和 V,代表了从 S 车站可以单向直达 E 车站,并且需要花费 V 单位的时间。
输出描述
输出一个整数,代表小明从起点到终点所花费的最小时间。
输入示例
7 9
1 2 1
1 3 4
2 3 2
2 4 5
3 4 2
4 5 3
2 6 4
5 7 4
6 7 9
输出示例
12
提示信息
能够到达的情况:
如下图所示,起始车站为 1 号车站,终点车站为 7 号车站,绿色路线为最短的路线,路线总长度为 12,则输出 12。
不能到达的情况:
如下图所示,当从起始车站不能到达终点车站时,则输出 -1。
数据范围:
1 <= N <= 500;
1 <= M <= 5000;
堆优化版
import heapq
n,m=map(int,input().split())
graph=[[float('inf') for _ in range(n+1)] for _ in range(n+1)]
visited=[False for _ in range(n+1)]
minDist=[float('inf') for _ in range(n+1)]
for _ in range(m):s,e,t=map(int,input().split())graph[s][e]=tminDist[1]=0
hq=[(0,1)]while hq:# 选择一个离源点最近的节点且未被访问过min_dist,cur=heapq.heappop(hq)# 该最近节点标记为访问过visited[cur]=True# 更新非访问节点到源点的距离for j in range(1,n+1):if visited[j]==False and min_dist+graph[cur][j]<minDist[j]:minDist[j]=min_dist+graph[cur][j]heapq.heappush(hq,(minDist[j],j))
if minDist[-1]==float('inf'):print(-1)
else:print(minDist[-1])
运行结果
城市间货物运输 I
题目描述
某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。
网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用;权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。
请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。如果最低运输成本是一个负数,它表示在遵循最优路径的情况下,运输过程中反而能够实现盈利。
城市 1 到城市 n 之间可能会出现没有路径的情况,同时保证道路网络中不存在任何负权回路。
输入描述
第一行包含两个正整数,第一个正整数 n 表示该国一共有 n 个城市,第二个整数 m 表示这些城市中共有 m 条道路。
接下来为 m 行,每行包括三个整数,s、t 和 v,表示 s 号城市运输货物到达 t 号城市,道路权值为 v (单向图)。
输出描述
如果能够从城市 1 到连通到城市 n, 请输出一个整数,表示运输成本。如果该整数是负数,则表示实现了盈利。如果从城市 1 没有路径可达城市 n,请输出 “unconnected”。
输入示例
6 7
5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5
输出示例
1
提示信息
示例中最佳路径是从 1 -> 2 -> 5 -> 6,路上的权值分别为 1 2 -2,最终的最低运输成本为 1 + 2 + (-2) = 1。
示例 2:
4 2
1 2 -1
3 4 -1
在此示例中,无法找到一条路径从 1 通往 4,所以此时应该输出 “unconnected”。
数据范围:
1 <= n <= 1000;
1 <= m <= 10000;
-100 <= v <= 100;
Bellman_ford算法
n,m=map(int,input().split())
minDist=[float('inf') for _ in range(n+1)] # 表示节点n到原点的最小距离
minDist[1]=0
sides=[list(map(int,input().split())) for _ in range(m)]for _ in range(n-1): # 松弛n-1次updated=Falsefor start,end,value in sides:if minDist[start]+value<minDist[end]:minDist[end]=minDist[start]+valueupdated=Trueif updated==False:breakif minDist[-1]!=float('inf'):print(minDist[-1])
else:print('unconnected')
运行结果