C++之序列容器(vector,list,dueqe)

1.大体对比

在软件开发的漫长历程中,数据结构与算法始终占据着核心地位,犹如大厦的基石,稳固支撑着整个程序的运行。在众多编程语言中,数据的存储与管理方式各有千秋,而 C++ 凭借其丰富且强大的工具集脱颖而出,尤其是在处理序列数据方面,C++ 标准模板库(STL)中的序列容器 vectorlist 和 deque 更是展现出卓越的性能与高度的灵活性。

和一些编程语言中单一的数据存储方式相比,C++ 这三种序列容器的存在,无疑为开发者提供了更多样化的选择。例如,在 Python 中,主要通过列表(list)来存储序列数据,其本质上是一种动态数组,但在处理大规模数据的随机访问和频繁插入删除操作时,性能表现往往不尽如人意。反观 C++ 的 vector,它与传统数组有相似之处,却具备了自动调整大小的功能,这一特性让其在面对数据量动态变化的场景时,能够轻松应对,极大地提升了开发效率。

再将目光投向链表结构。在 Java 语言中,虽然没有像 C++ list 这样直接对应的双向链表容器,但开发者可以通过自定义类和节点来构建链表结构。然而,这种方式不仅实现起来较为繁琐,而且在进行常见的元素操作,如插入和删除时,其效率远不及 C++ 的 list。C++ 的 list 作为双向链表,每个节点都包含指向前一个节点和后一个节点的指针,这种数据结构使得在任意位置进行插入和删除操作的时间复杂度都保持在常数级别,在需要频繁修改序列数据的场景中,它的优势便得以充分彰显。

deque 则是 C++ 序列容器中的一颗独特 “新星”,它巧妙地融合了 vector 和 list 的部分优势。和 Java 中的双端队列(ArrayDeque)相比,C++ 的 deque 不仅在两端进行元素的插入和删除操作时具有高效性,而且在支持随机访问方面也毫不逊色。这意味着,在既需要快速在两端增减元素,又要对序列中的元素进行随机访问的复杂场景下,deque 能够提供更为平衡和高效的解决方案。

正是基于这些显著的特性差异,深入了解 C++ 的 vectorlist 和 deque 这三种序列容器,对于每一位追求卓越编程质量的开发者而言,都显得尤为重要。接下来,让我们拨开迷雾,详细剖析这三种序列容器的独特之处,探寻它们在不同编程场景下的最佳应用方式

 2.数据结构

1.vector(连续)

 2.list(指针)

3.deque

3.成员函数

这个三个人的成员函数是一样

3.1 创建

vector():默认构造函数,创建一个空的 vector。
vector(size_type n, const T& value = T()):创建一个包含 n 个值为 value 的元素的 vector。
vector(const vector& other):拷贝构造函数,创建一个 other 的副本。
vector(InputIterator first, InputIterator last):使用迭代器 first 到 last 范围内的元素初始化list():默认构造函数,创建一个空的 vector。
list(size_type n, const T& value = T()):创建一个包含 n 个值为 value 的元素的 vector。
list(const vector& other):拷贝构造函数,创建一个 other 的副本。
list(InputIterator first, InputIterator last):使用迭代器 first 到 last 范围内的元素初始化 deque():默认构造函数,创建一个空的 vector。
deque(size_type n, const T& value = T()):创建一个包含 n 个值为 value 的元素的 vector。
deque(const vector& other):拷贝构造函数,创建一个 other 的副本。
deque(InputIterator first, InputIterator last):使用迭代器 first 到 last 范围内的元素初始化 

 3.2 访问


back()//返回队列尾部元素的引用。
front()//返回队列头部元素的引用。
clear()//清空队列中的所有元素。
empty()//判断队列是否为空。
size()//返回队列中元素的个数。
begin()//返回头位置的迭代器
end()//返回尾+1位置的迭代器//vector没有
rbegin()//返回逆头位置的迭代器 
rend()//返回逆尾-1位置的迭代器 //list没有
下标访问 []

 3.3删除

pop_back()//删除队列尾部的元素。
pop_front()//删除队列头部的元素
erase(iterator pos):移除 pos 位置的元素。
erase(iterator first, iterator last):移除 first 到 last 范围内的元素。
clear():移除 vector 中的所有元素

3.4插入

push_back(const T& value)
push_front(const T& value)
insert(iterator pos, const T& value)

 4.实现队列和栈

 栈:一种先进后出的数据结构

队列:一种先进先出的数据结构

用vector实现栈:

#include<vector>
#include<string>
using namespace std;template<class T> class stack {
private:std::vector<T> data;
public://创建stack();stack(const stack& other):data(other.data){};stack& operator=(const stack& other){data=other.data;return *this;}stack(int n, T val):data(n,val){}//访问int size()const {return data.size();}bool empty()const{if(data.size()==0)return true;elsereturn false;}T top() const{if(data.empty()==true)throw string("stack is empty");elsereturn data.back();}//插入void push(T val){data.push_back(val);}//删除void pop(){if(data.empty()==true)throw string("stack is empty");else{data.pop_back();}}~stack();};

5.总结

对比维度std::vectorstd::liststd::deque
底层结构动态数组,在内存中分配连续的存储空间。当容量不足时,通常会重新分配更大的内存块,将原数据复制过去并释放旧内存。双向链表,由一系列节点构成,每个节点包含数据、指向前一个节点的指针和指向后一个节点的指针。由多个固定大小的数组块组成,每个数组块内部连续存储,数组块之间通过指针连接,形成双端队列结构。
访问操作- 支持随机访问,可通过下标直接访问元素,时间复杂度为 \(O(1)\)。
- 访问元素非常高效,就像操作普通数组一样。
- 不支持随机访问,若要访问特定位置元素,需从头或尾开始遍历链表,时间复杂度为 (O(n))。
- 只能顺序访问元素。
- 支持随机访问,通过下标访问元素的时间复杂度为(O(1))。
- 虽然能随机访问,但由于是分段连续存储,在效率上可能略低于 vector
插入操作 在尾部插入元素效率高,平均时间复杂度为 (O(1)),但若触发内存重新分配,时间复杂度为 (O(n))。 在中间或头部插入元素,需要移动插入位置之后的所有元素,时间复杂度为 (O(n))。- 在任意位置插入元素的时间复杂度均为 (O(1)),只需修改相邻节点的指针。
- 插入操作非常灵活,效率高。
- 在头部和尾部插入元素效率高,时间复杂度为 (O(1))。
- 在中间插入元素,需要移动部分元素,时间复杂度为 (O(n)),但通常比 vector 移动元素的开销小。
删除操作- 在尾部删除元素效率高,时间复杂度为(O(1))。
- 在中间或头部删除元素,需要移动删除位置之后的所有元素,时间复杂度为 (O(n))。
 在任意位置删除元素的时间复杂度均为 (O(1)),只需修改相邻节点的指针。- 在头部和尾部删除元素效率高,时间复杂度为 \(O(1)\)。
- 在中间删除元素,需要移动部分元素,时间复杂度为 \(O(n)\),但通常比 vector 移动元素的开销小。
空间利用- 由于是连续存储,可能会有内存碎片问题。当容量不足重新分配内存时,可能会预留一定的额外空间,造成空间浪费。
- 不过,它的空间利用率相对较高,因为没有额外的指针开销。
每个节点都需要额外的指针来指向前一个和后一个节点,增加了内存开销。
- 但链表节点在内存中可以不连续存储,不会因为预留空间而造成浪费。
- 由于需要维护多个数组块以及块之间的连接信息,会有一定的额外开销。
- 不过,它在动态扩展时不需要像 vector 那样重新分配并复制大量数据,空间管理相对灵活。
迭代器-随机访问迭代器,支持 ++--+- 等操作,可以像指针一样灵活地在容器中移动。- 双向迭代器,支持 ++ 和 -- 操作,能双向遍历链表,但不支持随机访问。- 随机访问迭代器,与 vector 的迭代器类似,支持高效的随机访问操作。
迭代器失效情况- 当发生插入或删除操作导致内存重新分配时,所有迭代器、指针和引用都会失效。
- 在插入或删除元素后,插入或删除位置之后的迭代器、指针和引用会失效。
- 插入操作不会使任何迭代器、指针和引用失效。
- 删除操作只会使指向被删除节点的迭代器、指针和引用失效。
在头部或尾部插入元素时,迭代器一般不会失效,但指向元素的引用和指针可能会失效。
- 在中间插入或删除元素时,插入或删除位置之后的迭代器、指针和引用会失效。
使用场景 适合需要频繁随机访问元素,且插入和删除操作主要在尾部进行的场景,如存储一组数据并经常通过下标访问。
- 实现栈、队列等数据结构时,若操作主要集中在尾部,vector 是不错的选择。
- 适合需要频繁在任意位置进行插入和删除操作,而对随机访问需求较少的场景,如实现链表类的数据结构。
- 当需要频繁进行元素的移动、插入和删除,且不需要随机访问元素时,list 更合适。
- 适合需要在头部和尾部频繁进行插入和删除操作,同时也需要随机访问元素的场景,如实现双端队列。
- 当数据量较大,且需要在两端进行高效操作时,deque 是一个较好的选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/897295.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【学习笔记】【DeepSeek AI 医生】2-2 AI家庭医生课程内容介绍

【DeepSeek AI 医生】2-4 项目详细分析及DeepSeek适用场景 一、Ollama部署二、可视化UI三、构建项目环境四、搭建项目架构五、Spring Al六、SSE服务端推送事件七、数据持久化八、线上部署 一、Ollama部署 Mac部署windows 部署ollama脚本、常用命令DeepSeek 提示词、角色、适用…

STM32 I2C驱动开发全解析:从理论到实战 | 零基础入门STM32第五十步

主题内容教学目的/扩展视频I2C总线电路原理&#xff0c;跳线设置&#xff0c;I2C协议分析。驱动程序与调用。熟悉I2C总线协议&#xff0c;熟练调用。 师从洋桃电子&#xff0c;杜洋老师 &#x1f4d1;文章目录 引言一、I2C驱动分层架构二、I2C总线驱动代码精析2.1 初始化配置&a…

Vercel Serverless

1. 引言 现代应用程序是为适应当前技术环境需求而设计的软件&#xff0c;采用现代开发工具和实践&#xff0c;针对云部署和可扩展性优化。它们由多个模块化小组件组成&#xff0c;便于集成和缩放&#xff0c;具有高度的敏捷性和适应性&#xff0c;能快速响应用户或业务需求变化…

国产操作系统之系统分区及分区的作用

国产操作系统之系统分区及分区的作用和挂载 Linux的系统分区跟Windows有着本质区别,在windows中大家知道c盘一般为系统盘,除c盘系统盘外,我们再分为D、E等文件存储盘,而在Linux中虽然是以文件目录著称的系统,但思路也一样的,比如针对系统分区中 /home、/var 和 /opt 等文…

字节码是由什么组成的?

Java字节码是Java程序编译后的中间产物&#xff0c;它是一种二进制格式的代码&#xff0c;可以在Java虚拟机&#xff08;JVM&#xff09;上运行。理解字节码的组成有助于我们更好地理解Java程序的运行机制。 1. Java字节码是什么&#xff1f; 定义 Java字节码是Java源代码经过…

微前端框架 Qiankun 的应用及问题分析

一、Qiankun 的核心应用场景与优势 多技术栈共存与灵活集成 Qiankun 支持主应用与子应用使用不同技术栈&#xff08;如 Vue、React、Angular 等&#xff09;&#xff0c;通过 HTML Entry 方式接入子应用&#xff0c;无需深度改造子应用即可实现集成&#xff0c;降低了技术迁移成…

function uuid_generate_v4()不存在(二)

说明&#xff1a;之前代码里用到了postgresql内嵌函数uid_generate_v4()生成记录的主键&#xff0c;提示该函数不存在&#xff0c;写了下面这篇博客记录了一下&#xff0c;今天又发现了新的问题&#xff0c;于是补充了这篇博客。 function uuid_generate_v4()不存在&#xff0…

6. 机器人实现远程遥控(具身智能机器人套件)

1. 启动控制脚本 远程作到 Raspberry Pi 中&#xff0c;并运行以下脚本&#xff1a; conda activate lerobotpython lerobot/scripts/control_robot.py \--robot.typelekiwi \--control.typeremote_robot登录笔记本电脑上&#xff0c;同时运行以下脚本&#xff1a; conda ac…

【简单的C++围棋游戏开发示例】

C围棋游戏开发简单示例&#xff08;控制台版&#xff09; ‌核心代码实现‌ #include <iostream> #include <vector> #include <queue> using namespace std;const int SIZE 9; // 简化棋盘为9x9‌:ml-citation{ref"1" data"citationList&…

RK3568平台(音频篇)audio_policy_volumes_drc.xml解析

audio_policy_volumes_drc.xml 是 Android 系统中用于配置音频策略和音量的 XML 文件。它定义了音频流的音量曲线、动态范围控制(DRC)参数以及音频设备的音量设置。该文件通常位于 /vendor/etc/ 或 /system/etc/ 目录下,是 Android 音频框架的重要组成部分。 以下是对 audi…

如何下载安装 PyCharm?

李升伟 整理 一、下载 PyCharm 访问官网 打开 PyCharm 官网&#xff0c;点击 "Download" 按钮25。 版本选择&#xff1a; 社区版&#xff08;Community&#xff09;&#xff1a;免费使用&#xff0c;适合个人学习和基础开发。 专业版&#xff08;Professional&#…

leetcode day27 455+376

455 分发饼干 假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子 i&#xff0c;都有一个胃口值 g[i]&#xff0c;这是能让孩子们满足胃口的饼干的最小尺寸&#xff1b;并且每块饼干 j&#xff0c;都有…

HPC超算系列2——新手指南1

一&#xff0c;平台简介&#xff1a; 主要是官方手册指南、B站视频&#xff08;培训视频、软件视频&#xff09; 1&#xff0c;超算平台架构&#xff1a; 和普通的家用电脑的架构不同&#xff0c; 主要区别在于&#xff1a;层次化的结构 &#xff08;1&#xff09;超算是有…

K8S单机部署

主线 :部署简单的单节点k8s - sowler - 博客园 学习网址&#xff1a;为什么我不能获取到镜像&#xff0c;ImagePullBackoff | Kuboard docker镜像源&#xff1a;https://chuxia.blog.csdn.net/article/details/145090710?spm1001.2101.3001.6650.3&utm_mediumdistribute…

web3区块链

Web3 是指下一代互联网&#xff0c;也被称为“去中心化互联网”或“区块链互联网”。它是基于区块链技术构建的&#xff0c;旨在创建一个更加开放、透明和用户主导的网络生态系统。以下是关于 Web3 的一些关键点&#xff1a; ### 1. **核心概念** - **去中心化**&#xff1…

SQL Server核心知识总结

SQL Server核心知识总结 &#x1f3af; 本文总结了SQL Server核心知识点,每个主题都提供实际可运行的示例代码。 一、SQL Server基础精要 1. 数据库核心操作 -- 1. 创建数据库&#xff08;核心配置&#xff09; CREATE DATABASE 学生管理系统 ON PRIMARY (NAME 学生管理系统…

android 支持自定义布局、线程安全、避免内存泄漏的 Toast 工具类

支持自定义布局&#xff1a;可以灵活地显示自定义样式的 Toast。 线程安全&#xff1a;确保在主线程中显示 Toast&#xff0c;避免崩溃。 避免内存泄漏&#xff1a;使用 ApplicationContext 和取消机制&#xff0c;防止内存泄漏问题。 工具类&#xff1a;作为一个通用的工具…

嵌入式人工智能应用-第6章 人脸检测

嵌入式人工智能应用 人脸检测 嵌入式人工智能应用1 人脸检测1.1 CNN 介绍1.2 人脸检测原理1.3 MTCNN介绍1.4 NCNN介绍2 系统安装2.1 安装依赖库NCNN2.2 运行对应的库3 总结1 人脸检测 1.1 CNN 介绍 卷积神经网络。卷积是什么意思呢?从数学上说,卷积是一种运算。它是我们学习…

RocketMQ提供了哪些过滤机制?

前言 本篇文章比较简单&#xff0c;分别介绍RocketMQ支持几种过滤机制&#xff0c;其原理和使用。 RocketMQ 提供了多种消息过滤机制&#xff0c;帮根据业务需求高效筛选消息&#xff0c;可以减少不必要的消息传输和处理。以下是其核心过滤机制及使用场景&#xff1a; 1. Tag…

Redis数据结构深度解析:从String到Stream的奇幻之旅(一)

Redis系列文章 《半小时掌握Redis核心操作&#xff1a;从零开始的实战指南》-CSDN博客 Redis数据结构深度解析&#xff1a;从String到Stream的奇幻之旅&#xff08;一&#xff09;-CSDN博客 Redis数据结构深度解析&#xff1a;从String到Stream的奇幻之旅&#xff08;二&…