Hive-07之企业级调优

⭐️⭐️⭐️⭐️hive的企业级调优

1、Fetch抓取
  • Fetch抓取是指,Hive中对某些情况的查询可以不必使用MapReduce计算

    • 例如:select * from score;
    • 在这种情况下,Hive可以简单地读取employee对应的存储目录下的文件,然后输出查询结果到控制台
  • 在hive-default.xml.template文件中 hive.fetch.task.conversion默认是more,老版本hive默认是minimal,该属性修改为more以后,在全局查找、字段查找、limit查找等都不走mapreduce。

  • 案例实操

    • 把 hive.fetch.task.conversion设置成**none**,然后执行查询语句,都会执行mapreduce程序
    set hive.fetch.task.conversion=none;
    select * from score;
    select s_id from score;
    select s_id from score limit 3;
    
    • 把hive.fetch.task.conversion设置成==more==,然后执行查询语句,如下查询方式都不会执行mapreduce程序。
    set hive.fetch.task.conversion=more;
    select * from score;
    select s_id from score;
    select s_id from score limit 3;
    
2、本地模式
  • 在Hive客户端测试时,默认情况下是启用hadoop的job模式,把任务提交到集群中运行,这样会导致计算非常缓慢;

  • Hive可以通过本地模式在单台机器上处理任务。对于小数据集,执行时间可以明显被缩短。

  • 案例实操

    --开启本地模式,并执行查询语句
    set hive.exec.mode.local.auto=true;  //开启本地mr--设置local mr的最大输入数据量,当输入数据量小于这个值时采用local  mr的方式,
    --默认为134217728,即128M
    set hive.exec.mode.local.auto.inputbytes.max=50000000;--设置local mr的最大输入文件个数,当输入文件个数小于这个值时采用local mr的方式,
    --默认为4
    set hive.exec.mode.local.auto.input.files.max=5;--执行查询的sql语句
    select * from student cluster by s_id;
    
--关闭本地运行模式
set hive.exec.mode.local.auto=false;
select * from student cluster by s_id;
3、表的优化
1 小表、大表 join
  • 将key相对分散,并且数据量小的表放在join的左边,这样可以有效减少内存溢出错误发生的几率;再进一步,可以使用map join让小的维度表(1000条以下的记录条数)先进内存。在map端完成reduce。

    select  count(distinct s_id)  from score;select count(s_id) from score group by s_id; 在map端进行聚合,效率更高
    
  • 实际测试发现:新版的hive已经对小表 join 大表和大表 join 小表进行了优化。小表放在左边和右边已经没有明显区别。

  • 多个表关联时,最好分拆成小段,避免大sql(无法控制中间Job)

2 大表 join 大表
  • 1.空 key 过滤

    • 有时join超时是因为某些key对应的数据太多,而相同key对应的数据都会发送到相同的reducer上,从而导致内存不够。

    • 此时我们应该仔细分析这些异常的key,很多情况下,这些key对应的数据是异常数据,我们需要在SQL语句中进行过滤。

    • 测试环境准备:

      use myhive;
      create table ori(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';create table nullidtable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';create table jointable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';load data local inpath '/kkb/install/hivedatas/hive_big_table/*' into table ori; 
      load data local inpath '/kkb/install/hivedatas/hive_have_null_id/*' into table nullidtable;
      

      过滤空key与不过滤空key的结果比较

      不过滤:
      INSERT OVERWRITE TABLE jointable
      SELECT a.* FROM nullidtable a JOIN ori b ON a.id = b.id;
      结果:
      No rows affected (152.135 seconds)过滤:
      INSERT OVERWRITE TABLE jointable
      SELECT a.* FROM (SELECT * FROM nullidtable WHERE id IS NOT NULL ) a JOIN ori b ON a.id = b.id;
      结果:
      No rows affected (141.585 seconds)
      
  • 2、空 key 转换

    • 有时虽然某个 key 为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在 join 的结果中,此时我们可以表 a 中 key 为空的字段赋一个随机的值,使得数据随机均匀地分不到不同的 reducer 上。

      不随机分布:

      set hive.exec.reducers.bytes.per.reducer=32123456;
      set mapreduce.job.reduces=7;
      INSERT OVERWRITE TABLE jointable
      SELECT a.*
      FROM nullidtable a
      LEFT JOIN ori b ON CASE WHEN a.id IS NULL THEN 'hive' ELSE a.id END = b.id;
      No rows affected (41.668 seconds)  

      结果:这样的后果就是所有为null值的id全部都变成了相同的字符串,及其容易造成数据的倾斜(所有的key相同,相同key的数据会到同一个reduce当中去)

      为了解决这种情况,我们可以通过hive的rand函数,随记的给每一个为空的id赋上一个随机值,这样就不会造成数据倾斜

    ​ 随机分布:

    set hive.exec.reducers.bytes.per.reducer=32123456;
    set mapreduce.job.reduces=7;
    INSERT OVERWRITE TABLE jointable
    SELECT a.*
    FROM nullidtable a
    LEFT JOIN ori b ON CASE WHEN a.id IS NULL THEN concat('hive', rand()) ELSE a.id END = b.id;No rows affected (42.594 seconds)              
    
3、大表join小表与小表join大表实测

需求:测试大表JOIN小表和小表JOIN大表的效率 (新的版本当中已经没有区别了,旧的版本当中需要使用小表)

(1)建大表、小表和JOIN后表的语句

create table bigtable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';create table smalltable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';create table jointable2(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';

(2)分别向大表和小表中导入数据

hive (default)> load data local inpath '/kkb/install/hivedatas/big_data' into table bigtable;hive (default)>load data local inpath '/kkb/install/hivedatas/small_data' into table smalltable;
⭐️3 map join
  • 如果不指定MapJoin 或者不符合 MapJoin的条件,那么Hive解析器会将Join操作转换成Common Join,即:在Reduce阶段完成join。容易发生数据倾斜。可以用 MapJoin 把小表全部加载到内存在map端进行join,避免reducer处理。

  • 1、开启MapJoin参数设置

     --默认为true
    set hive.auto.convert.join = true;
    
  • 2、大表小表的阈值设置(默认25M一下认为是小表)

set hive.mapjoin.smalltable.filesize=26214400;
  • 3、MapJoin工作机制

在这里插入图片描述

首先是Task A,它是一个Local Task(在客户端本地执行的Task),负责扫描小表b的数据,将其转换成一个HashTable的数据结构,并写入本地的文件中,之后将该文件加载到DistributeCache中。

接下来是Task B,该任务是一个没有Reduce的MR,启动MapTasks扫描大表a,在Map阶段,根据a的每一条记录去和DistributeCache中b表对应的HashTable关联,并直接输出结果。

由于MapJoin没有Reduce,所以由Map直接输出结果文件,有多少个Map Task,就有多少个结果文件。

案例实操:

(1)开启Mapjoin功能

set hive.auto.convert.join = true; 默认为true

(2)执行小表JOIN大表语句

INSERT OVERWRITE TABLE jointable2
SELECT b.id, b.time, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
FROM smalltable s
JOIN bigtable  b
ON s.id = b.id;Time taken: 31.814 seconds

(3)执行大表JOIN小表语句

INSERT OVERWRITE TABLE jointable2
SELECT b.id, b.time, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
FROM bigtable  b
JOIN smalltable  s
ON s.id = b.id;Time taken: 28.46 seconds
4 group By
  • 默认情况下,Map阶段同一Key数据分发给一个reduce,当一个key数据过大时就倾斜了。

  • 并不是所有的聚合操作都需要在Reduce端完成,很多聚合操作都可以先在Map端进行部分聚合,最后在Reduce端得出最终结果。

  • 开启Map端聚合参数设置

    --是否在Map端进行聚合,默认为True
    set hive.map.aggr = true;
    --在Map端进行聚合操作的条目数目
    set hive.groupby.mapaggr.checkinterval = 100000;
    --有数据倾斜的时候进行负载均衡(默认是false)
    set hive.groupby.skewindata = true;当选项设定为 true,生成的查询计划会有两个MR Job。第一个MR Job中,Map的输出结果会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MR Job再根据预处理的数据结果按照Group By Key分布到Reduce中(这个过程可以保证相同的Group By Key被分布到同一个Reduce中),最后完成最终的聚合操作。
    
5 count(distinct)
  • 数据量小的时候无所谓,数据量大的情况下,由于count distinct 操作需要用一个reduce Task来完成,这一个Reduce需要处理的数据量太大,就会导致整个Job很难完成,一般count distinct使用先group by 再count的方式替换

    环境准备:

    create table bigtable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';load data local inpath '/kkb/install/hivedatas/data/100万条大表数据(id除以10取整)/bigtable' into table bigtable;--每个reduce任务处理的数据量 默认256000000(256M)set hive.exec.reducers.bytes.per.reducer=32123456;select  count(distinct ip )  from log_text;转换成set hive.exec.reducers.bytes.per.reducer=32123456;select count(ip) from (select ip from log_text group by ip) t;虽然会多用一个Job来完成,但在数据量大的情况下,这个绝对是值得的。
    
6 笛卡尔积
  • 尽量避免笛卡尔积,即避免join的时候不加on条件,或者无效的on条件
  • Hive只能使用1个reducer来完成笛卡尔积。
⭐️4、使用分区剪裁、列剪裁
  • 尽可能早地过滤掉尽可能多的数据量,避免大量数据流入外层SQL。
  • 列剪裁
    • 只获取需要的列的数据,减少数据输入。
  • 分区裁剪
    • 分区在hive实质上是目录,分区裁剪可以方便直接地过滤掉大部分数据。
    • 尽量使用分区过滤,少用select *

​ 环境准备:

create table ori(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';create table bigtable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';load data local inpath '/home/admin/softwares/data/加递增id的原始数据/ori' into table ori;load data local inpath '/home/admin/softwares/data/100万条大表数据(id除以10取整)/bigtable' into table bigtable;

先关联再Where:

SELECT a.id
FROM bigtable a
LEFT JOIN ori b ON a.id = b.id
WHERE b.id <= 10;

正确的写法是写在ON后面:先Where再关联

SELECT a.id
FROM ori a
LEFT JOIN bigtable b ON (a.id <= 10 AND a.id = b.id);

或者直接写成子查询:

SELECT a.id
FROM bigtable a
RIGHT JOIN (SELECT id
FROM ori
WHERE id <= 10
) b ON a.id = b.id;
5、并行执行
  • 把一个sql语句中没有相互依赖的阶段并行去运行。提高集群资源利用率
--开启并行执行
set hive.exec.parallel=true;
--同一个sql允许最大并行度,默认为8。
set hive.exec.parallel.thread.number=16;
6、严格模式
  • Hive提供了一个严格模式,可以防止用户执行那些可能意想不到的不好的影响的查询。

  • 通过设置属性hive.mapred.mode值为默认是非严格模式nonstrict 。开启严格模式需要修改hive.mapred.mode值为strict,开启严格模式可以禁止3种类型的查询。

    --设置非严格模式(默认)
    set hive.mapred.mode=nonstrict;--设置严格模式
    set hive.mapred.mode=strict;
    
  • (1)对于分区表,除非where语句中含有分区字段过滤条件来限制范围,否则不允许执行

    --设置严格模式下 执行sql语句报错; 非严格模式下是可以的
    select * from order_partition;异常信息:Error: Error while compiling statement: FAILED: SemanticException [Error 10041]: No partition predicate found for Alias "order_partition" Table "order_partition" 
    
  • (2)对于使用了order by语句的查询,要求必须使用limit语句

    --设置严格模式下 执行sql语句报错; 非严格模式下是可以的
    select * from order_partition where month='2019-03' order by order_price; 异常信息:Error: Error while compiling statement: FAILED: SemanticException 1:61 In strict mode, if ORDER BY is specified, LIMIT must also be specified. Error encountered near token 'order_price'
    
  • (3)限制笛卡尔积的查询

    • 严格模式下,避免出现笛卡尔积的查询
7、JVM重用
  • JVM重用是Hadoop调优参数的内容,其对Hive的性能具有非常大的影响,特别是对于很难避免小文件的场景或task特别多的场景,这类场景大多数执行时间都很短。

    Hadoop的默认配置通常是使用派生JVM来执行map和Reduce任务的。这时JVM的启动过程可能会造成相当大的开销,尤其是执行的job包含有成百上千task任务的情况。JVM重用可以使得JVM实例在同一个job中重新使用N次。N的值可以在Hadoop的mapred-site.xml文件中进行配置。通常在10-20之间,具体多少需要根据具体业务场景测试得出。

    <property><name>mapreduce.job.jvm.numtasks</name><value>10</value><description>How many tasks to run per jvm. If set to -1, there isno limit. </description>
    </property>

    我们也可以在hive当中通过

     set  mapred.job.reuse.jvm.num.tasks=10;
    

    这个设置来设置我们的jvm重用

    这个功能的缺点是,开启JVM重用将一直占用使用到的task插槽,以便进行重用,直到任务完成后才能释放。如果某个“不平衡的”job中有某几个reduce task执行的时间要比其他Reduce task消耗的时间多的多的话,那么保留的插槽就会一直空闲着却无法被其他的job使用,直到所有的task都结束了才会释放。

8、推测执行
  • 在分布式集群环境下,因为程序Bug(包括Hadoop本身的bug),负载不均衡或者资源分布不均等原因,会造成同一个作业的多个任务之间运行速度不一致,有些任务的运行速度可能明显慢于其他任务(比如一个作业的某个任务进度只有50%,而其他所有任务已经运行完毕),则这些任务会拖慢作业的整体执行进度。为了避免这种情况发生,Hadoop采用了推测执行(Speculative Execution)机制,它根据一定的法则推测出“拖后腿”的任务,并为这样的任务启动一个备份任务,让该任务与原始任务同时处理同一份数据,并最终选用最先成功运行完成任务的计算结果作为最终结果。

    设置开启推测执行参数:Hadoop的mapred-site.xml文件中进行配置

<property><name>mapreduce.map.speculative</name><value>true</value><description>If true, then multiple instances of some map tasks may be executed in parallel.</description>
</property><property><name>mapreduce.reduce.speculative</name><value>true</value><description>If true, then multiple instances of some reduce tasks may be executed in parallel.</description>
</property>

不过hive本身也提供了配置项来控制reduce-side的推测执行:

  <property><name>hive.mapred.reduce.tasks.speculative.execution</name><value>true</value><description>Whether speculative execution for reducers should be turned on. </description></property>

关于调优这些推测执行变量,还很难给一个具体的建议。如果用户对于运行时的偏差非常敏感的话,那么可以将这些功能关闭掉。如果用户因为输入数据量很大而需要执行长时间的map或者Reduce task的话,那么启动推测执行造成的浪费是非常巨大大。

9、压缩

​ 参见数据的压缩

  • Hive表中间数据压缩

    #设置为true为激活中间数据压缩功能,默认是false,没有开启
    set hive.exec.compress.intermediate=true;
    #设置中间数据的压缩算法
    set mapred.map.output.compression.codec= org.apache.hadoop.io.compress.SnappyCodec;
  • Hive表最终输出结果压缩

    set hive.exec.compress.output=true;
    set mapred.output.compression.codec= 
    org.apache.hadoop.io.compress.SnappyCodec;
    
10、使用EXPLAIN(执行计划)

查看hql执行计划

⭐️⭐️11、数据倾斜
1 合理设置Map数
    1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。
    主要的决定因素有:input的文件总个数,input的文件大小,集群设置的文件块大小。举例:
    a)  假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数。
    b) 假设input目录下有3个文件a,b,c大小分别为10m,20m,150m,那么hadoop会分隔成4个块(10m,20m,128m,22m),从而产生4个map数。即,如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。
  • 2) 是不是map数越多越好?

      答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。
    
  • 3) 是不是保证每个map处理接近128m的文件块,就高枕无忧了?

    答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。针对上面的问题2和3,我们需要采取两种方式来解决:即减少map数和增加map数;
2 小文件合并
  • 在map执行前合并小文件,减少map数:

  • CombineHiveInputFormat 具有对小文件进行合并的功能(系统默认的格式)

    set mapred.max.split.size=112345600;
    set mapred.min.split.size.per.node=112345600;
    set mapred.min.split.size.per.rack=112345600;
    set hive.input.format= org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

    这个参数表示执行前进行小文件合并,前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),进行合并。

3 复杂文件增加Map数
  • 当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。

  • 增加map的方法为

    • 根据 ==computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))==公式
    • 调整maxSize最大值。让maxSize最大值低于blocksize就可以增加map的个数。
    mapreduce.input.fileinputformat.split.minsize=1 默认值为1mapreduce.input.fileinputformat.split.maxsize=Long.MAXValue 默认值Long.MAXValue因此,默认情况下,切片大小=blocksize maxsize(切片最大值): 参数如果调到比blocksize小,则会让切片变小,而且就等于配置的这个参数的值。minsize(切片最小值): 参数调的比blockSize大,则可以让切片变得比blocksize还大。
    • 例如
    --设置maxsize大小为10M,也就是说一个fileSplit的大小为10M
    set mapreduce.input.fileinputformat.split.maxsize=10485760;
    
4 合理设置Reduce数
  • 1、调整reduce个数方法一

    • 1)每个Reduce处理的数据量默认是256MB

      set hive.exec.reducers.bytes.per.reducer=256000000;
      
      1. 每个任务最大的reduce数,默认为1009
      set hive.exec.reducers.max=1009;
      
      1. 计算reducer数的公式
      N=min(参数2,总输入数据量/参数1)
      
  • 2、调整reduce个数方法二

    --设置每一个job中reduce个数
    set mapreduce.job.reduces=3;
    
  • 3、reduce个数并不是越多越好

    • 过多的启动和初始化reduce也会消耗时间和资源;

    • 同时过多的reduce会生成很多个文件,也有可能出现小文件问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/896991.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为云 | 快速搭建DeepSeek推理系统

DeepSeek&#xff08;深度求索&#xff09;作为一款国产AI大模型&#xff0c;凭借其高性能、低成本和多模态融合能力&#xff0c;在人工智能领域崛起&#xff0c;并在多个行业中展现出广泛的应用潜力。 如上所示&#xff0c;在华为云解决方案实践中&#xff0c;华为云提供的快速…

Spring Boot 3 整合 MinIO 实现分布式文件存储

引言 文件存储已成为一个做任何应用都不可回避的需求。传统的单机文件存储方案在面对大规模数据和高并发访问时往往力不从心&#xff0c;而分布式文件存储系统则提供了更好的解决方案。本篇文章我将基于Spring Boot 3 为大家讲解如何基于MinIO来实现分布式文件存储。 分布式存…

3月5日作业

代码作业&#xff1a; #!/bin/bash# 清空目录函数 safe_clear_dir() {local dir"$1"local name"$2"if [ -d "$dir" ]; thenwhile true; doread -p "检测到 $name 目录已存在&#xff0c;请选择操作&#xff1a; 1) 清空目录内容 2) 保留目…

达梦数据库关于参数PK_WITH_CLUSTER的改动分析

目录 1、PK_WITH_CLUSTER取值为0 2、PK_WITH_CLUSTER取值为1 达梦数据库的参数PK_WITH_CLUSTER在最近使用过程中发现与前期使用的版本存在差异&#xff0c;特此测试分析一下。具体哪个版本改动的暂未得知。 PK_WITH_CLUSTER&#xff0c;默认值为0&#xff0c;动态会话级参数。…

android11使用gpio口控制led状态灯

目录 一、简介 二、解决方法 A、底层驱动 B、上层调用 C、验证 一、简介 1、需求&#xff1a;这里是用2个gpio口来控制LED灯&#xff0c;开机时默认亮蓝灯&#xff0c;按开机键&#xff0c;休眠亮红灯&#xff0c;唤醒亮蓝灯。 原理图&#xff1a; 这里由于主板上电阻R63…

windows 利用nvm 管理node.js 2025最新版

1.首先在下载nvm 下载链接 2. 下载最新版本的nvm 3. 同意协议 注意&#xff1a;选择安装路径 之后一直下一步即可 可以取消勾选 open with Powershell 勾选后它会自动打开Powershell 这里选用cmd 输入以下命令查看是否安装成功 nvm version 查看已经安装的版本 我之前自…

深入浅出:UniApp 从入门到精通全指南

https://juejin.cn/post/7440119937644101684 uni-app官网 本文是关于 UniApp 从入门到精通的全指南&#xff0c;涵盖基础入门&#xff08;环境搭建、创建项目、项目结构、编写运行&#xff09;、核心概念与进阶知识&#xff08;组件与开发、页面路由与导航、数据绑定与响应式…

MySQL ——数据的增删改查

一、DML语言 1.1 insert插入数据 语法&#xff1a;insert [into] 表名 [字段名] values(值列表)&#xff1b; 插入一行数据 第一种&#xff1a;insert into file1(id,name,age) values (1,‘aa’,11); 第二种&#xff1a;insert into file1 values(1,‘aa’,11); 插入多行数…

【CF记录】贪心——A. Scrambled Scrabble

https://codeforces.com/contest/2045/problem/A 思路&#xff1a; 由于Y有两种选择&#xff0c;NG也是&#xff0c;那我们可以枚举以下情况&#xff1a;选i个Y做辅音&#xff0c;j个NG做辅音 然后贪心选择最长的即可&#xff0c;观察到S最长为5000&#xff0c;即使是也不会…

C语言【指针篇】(四)

前言&#xff1a;正文1. 字符指针变量2. 数组指针变量2.1 数组指针变量是什么?2.2 数组指针变量怎么初始化 3. 二维数组传参的本质4. 函数指针变量4.1 函数指针变量的创建4.2 函数指针变量的使用4.3 两段有趣的代码4.3.1 typedef关键字 5. 函数指针数组6. 转移表 总结 前言&am…

React + TypeScript 实战指南:用类型守护你的组件

TypeScript 为 React 开发带来了强大的类型安全保障&#xff0c;这里解析常见的一些TS写法&#xff1a; 一、组件基础类型 1. 函数组件定义 // 显式声明 Props 类型并标注返回值 interface WelcomeProps {name: string;age?: number; // 可选属性 }const Welcome: React.FC…

【玩转正则表达式】将正则表达式中的分组(group)与替换进行结合使用

在文本处理和数据分析领域&#xff0c;正则表达式&#xff08;Regular Expressions&#xff0c;简称regex&#xff09;是一种功能强大的工具。它不仅能够帮助我们匹配和搜索字符串中的特定模式&#xff0c;还能通过分组&#xff08;Grouping&#xff09;和替换&#xff08;Subs…

Flutter 学习之旅 之 flutter 不使用插件,简单实现一个 Toast 功能

Flutter 学习之旅 之 flutter 不使用插件&#xff0c;简单实现一个 Toast 功能 目录 Flutter 学习之旅 之 flutter 不使用插件&#xff0c;简单实现一个 Toast 功能 一、简单介绍 二、简单介绍 Toast 1. 确保正确配置 navigatorKey 2. 避免重复显示 Toast 3. 确保 Toast …

《OpenCV》——dlib(人脸应用实例)

文章目录 dlib库dlib库——人脸应用实例——表情识别dlib库——人脸应用实例——疲劳检测 dlib库 dlib库的基础用法介绍可以参考这篇文章&#xff1a;https://blog.csdn.net/lou0720/article/details/145968062?spm1011.2415.3001.5331&#xff0c;故此这篇文章只介绍dlib的人…

学习日记-250305

阅读论文&#xff1a;Leveraging Pedagogical Theories to Understand Student Learning Process with Graph-based Reasonable Knowledge Tracing ps:代码逻辑最后一点还没理顺&#xff0c;明天继续 4.2 Knowledge Memory & Knowledge Tracing 代码研究&#xff1a; 一般…

【AI大模型】DeepSeek + Kimi 高效制作PPT实战详解

目录 一、前言 二、传统 PPT 制作问题 2.1 传统方式制作 PPT 2.2 AI 大模型辅助制作 PPT 2.3 适用场景对比分析 2.4 最佳实践与推荐 三、DeepSeek Kimi 高效制作PPT操作实践 3.1 Kimi 简介 3.2 DeepSeek Kimi 制作PPT优势 3.2.1 DeepSeek 优势 3.2.2 Kimi 制作PPT优…

【ESP-ADF】在 VSCode 安装 ESP-ADF 注意事项

1.检查网络 如果您在中国大陆安装&#xff0c;请使用魔法上网&#xff0c;避免无法 clone ESP-ADF 仓库。 2.VSCode 安装 ESP-ADF 在 VSCode 左侧活动栏选择 ESP-IDF:explorer&#xff0c;展开 advanced 并点击 Install ESP-ADF 然后会出现选择 ESP-ADF 安装目录。 如果出现…

关于2023新版PyCharm的使用

考虑到大家AI编程的需要&#xff0c;建议大家安装新版Python解释器和新版PyCharm&#xff0c;下载地址都可以官网进行&#xff1a; Python&#xff1a;Download Python | Python.org&#xff08;可以根据需要自行选择&#xff0c;建议选择3.11&#xff0c;保持交流版本一致&am…

轻松部署 Stable Diffusion WebUI 并实现局域网共享访问:解决 Conda Python 版本不为 3.10.6 的难题

这篇博文主要为大家讲解关于sd webui的部署问题&#xff0c;大家有什么不懂的可以随时问我&#xff0c;如果没有及时回复&#xff0c;可联系&#xff1a;1198965922 如果后续大家需要了解怎么用代码调用部署好的webui的接口&#xff0c;可以在评论区留言哦&#xff0c;博主可以…

Leetcode 103: 二叉树的锯齿形层序遍历

Leetcode 103: 二叉树的锯齿形层序遍历 问题描述&#xff1a; 给定一个二叉树&#xff0c;返回其节点值的锯齿形层序遍历&#xff08;即第一层从左到右&#xff0c;第二层从右到左&#xff0c;第三层从左到右&#xff0c;依此类推&#xff09;。 适合面试的解法&#xff1a;广…