linux离线安装ollama并部署deepseek-r1模型 指南

这篇文章主要分为两部分:
(1)离线环境下如何部署Ollama;
(2)在离线环境下如何配置大模型,其中这一步又分为:

 1)部署完整的deepseek大模型,如:deepseek-r1:32B;
 2)部署蒸馏版模型,如:DeepSeek-R1-Distill-Llama-32B-Q5_K_M.gguf。
(deepseek-r1:32B是完整的32B(320亿参数)的DeepSeek-R1模型,DeepSeek-R1-Distill-Llama-32B-Q5_K_M.gguf经过量化优化,运行效率更高,适用于设备资源有限(如GPU显存较小)的情况。如果想要最高的推理质量,可以尝试完整的deepseek-r1:32B,但可能需要更高端的硬件。具体显卡要求可以查看这篇博客:https://blog.csdn.net/xiangerersheng/article/details/145640259。

(1)离线环境下部署ollama

一、通过浏览器访问ollama官方安装脚本,获取脚本内容,复制里面的所有内容。并在linux中执行vi install.sh,将复制的内容粘贴进去。
(https://ollama.com/install.sh)。
二、修改install.sh脚本,下面是完整的脚本,也可以忽略第一步直接复制下面的所有代码写入install.sh。这里主要的修改是:连网获取ollama的部分改为从本地获取。

#!/bin/sh
# This script installs Ollama on Linux.
# It detects the current operating system architecture and installs the appropriate version of Ollama.set -eustatus() { echo ">>> $*" >&2; }
error() { echo "ERROR $*"; exit 1; }
warning() { echo "WARNING: $*"; }TEMP_DIR=$(mktemp -d)
cleanup() { rm -rf $TEMP_DIR; }
trap cleanup EXITavailable() { command -v $1 >/dev/null; }
require() {local MISSING=''for TOOL in $*; doif ! available $TOOL; thenMISSING="$MISSING $TOOL"fidoneecho $MISSING
}[ "$(uname -s)" = "Linux" ] || error 'This script is intended to run on Linux only.'ARCH=$(uname -m)
case "$ARCH" inx86_64) ARCH="amd64" ;;aarch64|arm64) ARCH="arm64" ;;*) error "Unsupported architecture: $ARCH" ;;
esacIS_WSL2=falseKERN=$(uname -r)
case "$KERN" in*icrosoft*WSL2 | *icrosoft*wsl2) IS_WSL2=true;;*icrosoft) error "Microsoft WSL1 is not currently supported. Please use WSL2 with 'wsl --set-version <distro> 2'" ;;*) ;;
esacVER_PARAM="${OLLAMA_VERSION:+?version=$OLLAMA_VERSION}"SUDO=
if [ "$(id -u)" -ne 0 ]; then# Running as root, no need for sudoif ! available sudo; thenerror "This script requires superuser permissions. Please re-run as root."fiSUDO="sudo"
fiNEEDS=$(require curl awk grep sed tee xargs)
if [ -n "$NEEDS" ]; thenstatus "ERROR: The following tools are required but missing:"for NEED in $NEEDS; doecho "  - $NEED"doneexit 1
fifor BINDIR in /usr/local/bin /usr/bin /bin; doecho $PATH | grep -q $BINDIR && break || continue
done
OLLAMA_INSTALL_DIR=$(dirname ${BINDIR})status "Installing ollama to $OLLAMA_INSTALL_DIR"
$SUDO install -o0 -g0 -m755 -d $BINDIR
$SUDO install -o0 -g0 -m755 -d "$OLLAMA_INSTALL_DIR"
#if curl -I --silent --fail --location "https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" >/dev/null ; then
#注释掉以下代码
#    status "Downloading Linux ${ARCH} bundle"
#    curl --fail --show-error --location --progress-bar \
#        "https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" | \
#        $SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
#    BUNDLE=1
#    if [ "$OLLAMA_INSTALL_DIR/bin/ollama" != "$BINDIR/ollama" ] ; then
#        status "Making ollama accessible in the PATH in $BINDIR"
#        $SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"
#    fi
#else
#    status "Downloading Linux ${ARCH} CLI"
#    curl --fail --show-error --location --progress-bar -o "$TEMP_DIR/ollama"\
#    "https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}"
#    $SUDO install -o0 -g0 -m755 $TEMP_DIR/ollama $OLLAMA_INSTALL_DIR/ollama
#    BUNDLE=0
#    if [ "$OLLAMA_INSTALL_DIR/ollama" != "$BINDIR/ollama" ] ; then
#        status "Making ollama accessible in the PATH in $BINDIR"
#        $SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"
#    fi
#fi
#新增以下代码
LOCAL_OLLAMA_TGZ="./ollama-linux-${ARCH}.tgz${VER_PARAM}"
if [ -f "$LOCAL_OLLAMA_TGZ" ]; thenstatus "Installing from local file $LOCAL_OLLAMA_TGZ"$SUDO tar -xzf "$LOCAL_OLLAMA_TGZ" -C "$OLLAMA_INSTALL_DIR"BUNDLE=1if [ ! -e "$BINDIR/ollama" ]; thenstatus "Making ollama accessible in the PATH in $BINDIR"$SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"fi
elseecho "Error: The local file $LOCAL_OLLAMA_TGZ does not exist."exit 1
fiinstall_success() {status 'The Ollama API is now available at 127.0.0.1:11434.'status 'Install complete. Run "ollama" from the command line.'
}
trap install_success EXIT# Everything from this point onwards is optional.configure_systemd() {if ! id ollama >/dev/null 2>&1; thenstatus "Creating ollama user..."$SUDO useradd -r -s /bin/false -U -m -d /usr/share/ollama ollamafiif getent group render >/dev/null 2>&1; thenstatus "Adding ollama user to render group..."$SUDO usermod -a -G render ollamafiif getent group video >/dev/null 2>&1; thenstatus "Adding ollama user to video group..."$SUDO usermod -a -G video ollamafistatus "Adding current user to ollama group..."$SUDO usermod -a -G ollama $(whoami)status "Creating ollama systemd service..."cat <<EOF | $SUDO tee /etc/systemd/system/ollama.service >/dev/null
[Unit]
Description=Ollama Service
After=network-online.target[Service]
ExecStart=$BINDIR/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=$PATH"[Install]
WantedBy=default.target
EOFSYSTEMCTL_RUNNING="$(systemctl is-system-running || true)"case $SYSTEMCTL_RUNNING inrunning|degraded)status "Enabling and starting ollama service..."$SUDO systemctl daemon-reload$SUDO systemctl enable ollamastart_service() { $SUDO systemctl restart ollama; }trap start_service EXIT;;esac
}if available systemctl; thenconfigure_systemd
fi# WSL2 only supports GPUs via nvidia passthrough
# so check for nvidia-smi to determine if GPU is available
if [ "$IS_WSL2" = true ]; thenif available nvidia-smi && [ -n "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; thenstatus "Nvidia GPU detected."fiinstall_successexit 0
fi# Install GPU dependencies on Linux
if ! available lspci && ! available lshw; thenwarning "Unable to detect NVIDIA/AMD GPU. Install lspci or lshw to automatically detect and install GPU dependencies."exit 0
ficheck_gpu() {# Look for devices based on vendor ID for NVIDIA and AMDcase $1 inlspci)case $2 innvidia) available lspci && lspci -d '10de:' | grep -q 'NVIDIA' || return 1 ;;amdgpu) available lspci && lspci -d '1002:' | grep -q 'AMD' || return 1 ;;esac ;;lshw)case $2 innvidia) available lshw && $SUDO lshw -c display -numeric -disable network | grep -q 'vendor: .* \[10DE\]' || return 1 ;;amdgpu) available lshw && $SUDO lshw -c display -numeric -disable network | grep -q 'vendor: .* \[1002\]' || return 1 ;;esac ;;nvidia-smi) available nvidia-smi || return 1 ;;esac
}if check_gpu nvidia-smi; thenstatus "NVIDIA GPU installed."exit 0
fiif ! check_gpu lspci nvidia && ! check_gpu lshw nvidia && ! check_gpu lspci amdgpu && ! check_gpu lshw amdgpu; theninstall_successwarning "No NVIDIA/AMD GPU detected. Ollama will run in CPU-only mode."exit 0
fiif check_gpu lspci amdgpu || check_gpu lshw amdgpu; thenif [ $BUNDLE -ne 0 ]; thenstatus "Downloading Linux ROCm ${ARCH} bundle"curl --fail --show-error --location --progress-bar \"https://ollama.com/download/ollama-linux-${ARCH}-rocm.tgz${VER_PARAM}" | \$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"install_successstatus "AMD GPU ready."exit 0fi# Look for pre-existing ROCm v6 before downloading the dependenciesfor search in "${HIP_PATH:-''}" "${ROCM_PATH:-''}" "/opt/rocm" "/usr/lib64"; doif [ -n "${search}" ] && [ -e "${search}/libhipblas.so.2" -o -e "${search}/lib/libhipblas.so.2" ]; thenstatus "Compatible AMD GPU ROCm library detected at ${search}"install_successexit 0fidonestatus "Downloading AMD GPU dependencies..."$SUDO rm -rf /usr/share/ollama/lib$SUDO chmod o+x /usr/share/ollama$SUDO install -o ollama -g ollama -m 755 -d /usr/share/ollama/lib/rocmcurl --fail --show-error --location --progress-bar "https://ollama.com/download/ollama-linux-amd64-rocm.tgz${VER_PARAM}" \| $SUDO tar zx --owner ollama --group ollama -C /usr/share/ollama/lib/rocm .install_successstatus "AMD GPU ready."exit 0
fiCUDA_REPO_ERR_MSG="NVIDIA GPU detected, but your OS and Architecture are not supported by NVIDIA.  Please install the CUDA driver manually https://docs.nvidia.com/cuda/cuda-installation-guide-linux/"
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-7-centos-7
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-8-rocky-8
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-9-rocky-9
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#fedora
install_cuda_driver_yum() {status 'Installing NVIDIA repository...'case $PACKAGE_MANAGER inyum)$SUDO $PACKAGE_MANAGER -y install yum-utilsif curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repo" >/dev/null ; then$SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repoelseerror $CUDA_REPO_ERR_MSGfi;;dnf)if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repo" >/dev/null ; then$SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repoelseerror $CUDA_REPO_ERR_MSGfi;;esaccase $1 inrhel)status 'Installing EPEL repository...'# EPEL is required for third-party dependencies such as dkms and libvdpau$SUDO $PACKAGE_MANAGER -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-$2.noarch.rpm || true;;esacstatus 'Installing CUDA driver...'if [ "$1" = 'centos' ] || [ "$1$2" = 'rhel7' ]; then$SUDO $PACKAGE_MANAGER -y install nvidia-driver-latest-dkmsfi$SUDO $PACKAGE_MANAGER -y install cuda-drivers
}# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#ubuntu
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#debian
install_cuda_driver_apt() {status 'Installing NVIDIA repository...'if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-keyring_1.1-1_all.deb" >/dev/null ; thencurl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-keyring_1.1-1_all.debelseerror $CUDA_REPO_ERR_MSGficase $1 indebian)status 'Enabling contrib sources...'$SUDO sed 's/main/contrib/' < /etc/apt/sources.list | $SUDO tee /etc/apt/sources.list.d/contrib.list > /dev/nullif [ -f "/etc/apt/sources.list.d/debian.sources" ]; then$SUDO sed 's/main/contrib/' < /etc/apt/sources.list.d/debian.sources | $SUDO tee /etc/apt/sources.list.d/contrib.sources > /dev/nullfi;;esacstatus 'Installing CUDA driver...'$SUDO dpkg -i $TEMP_DIR/cuda-keyring.deb$SUDO apt-get update[ -n "$SUDO" ] && SUDO_E="$SUDO -E" || SUDO_E=DEBIAN_FRONTEND=noninteractive $SUDO_E apt-get -y install cuda-drivers -q
}if [ ! -f "/etc/os-release" ]; thenerror "Unknown distribution. Skipping CUDA installation."
fi. /etc/os-releaseOS_NAME=$ID
OS_VERSION=$VERSION_IDPACKAGE_MANAGER=
for PACKAGE_MANAGER in dnf yum apt-get; doif available $PACKAGE_MANAGER; thenbreakfi
doneif [ -z "$PACKAGE_MANAGER" ]; thenerror "Unknown package manager. Skipping CUDA installation."
fiif ! check_gpu nvidia-smi || [ -z "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; thencase $OS_NAME incentos|rhel) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -d '.' -f 1) ;;rocky) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -c1) ;;fedora) [ $OS_VERSION -lt '39' ] && install_cuda_driver_yum $OS_NAME $OS_VERSION || install_cuda_driver_yum $OS_NAME '39';;amzn) install_cuda_driver_yum 'fedora' '37' ;;debian) install_cuda_driver_apt $OS_NAME $OS_VERSION ;;ubuntu) install_cuda_driver_apt $OS_NAME $(echo $OS_VERSION | sed 's/\.//') ;;*) exit ;;esac
fiif ! lsmod | grep -q nvidia || ! lsmod | grep -q nvidia_uvm; thenKERNEL_RELEASE="$(uname -r)"case $OS_NAME inrocky) $SUDO $PACKAGE_MANAGER -y install kernel-devel kernel-headers ;;centos|rhel|amzn) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE kernel-headers-$KERNEL_RELEASE ;;fedora) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE ;;debian|ubuntu) $SUDO apt-get -y install linux-headers-$KERNEL_RELEASE ;;*) exit ;;esacNVIDIA_CUDA_VERSION=$($SUDO dkms status | awk -F: '/added/ { print $1 }')if [ -n "$NVIDIA_CUDA_VERSION" ]; then$SUDO dkms install $NVIDIA_CUDA_VERSIONfiif lsmod | grep -q nouveau; thenstatus 'Reboot to complete NVIDIA CUDA driver install.'exit 0fi$SUDO modprobe nvidia$SUDO modprobe nvidia_uvm
fi# make sure the NVIDIA modules are loaded on boot with nvidia-persistenced
if available nvidia-persistenced; then$SUDO touch /etc/modules-load.d/nvidia.confMODULES="nvidia nvidia-uvm"for MODULE in $MODULES; doif ! grep -qxF "$MODULE" /etc/modules-load.d/nvidia.conf; thenecho "$MODULE" | $SUDO tee -a /etc/modules-load.d/nvidia.conf > /dev/nullfidone
fistatus "NVIDIA GPU ready."
install_success

三、下载ollama安装包
下载地址:https://github.com/ollama/ollama/releases
具体需要下载哪个可以通过在命令行输入 lscpu 查看自己的cpu架构

x86_64 CPU 选择下载 ollama-linux-amd64.tgz aarch64
arm64 CPU 选择下载 ollama-linux-arm64.tgz

在这里插入图片描述
四、运行install.sh脚本进行安装
进入install.sh所在目录:

chmod +x install.sh    #给脚本赋予执行权限
./install.sh
# 如果报错误: bash: ./build_android.sh:/bin/sh^M:解释器错误: 没有那个文件或目录,执行
sed -i 's/\r$//' install.sh

五、配置ollama
需要配置监听host、下载路径、多CUDA使用等变量。
运行:

vim /etc/systemd/system/ollama.service

在里面加入你新创建的路径:
在这里插入图片描述
这里host设置主要是为了后面open webui,可能无法访问。
cuda设置,使用两块gpu,主要是优先使用3号gpu。也可以删除Environment=“CUDA_VISIBLE_DEVICES=3,2这行来默认使用所有gpu或指定所有gpu,如你的服务器有 4 块 GPU(ID: 0,1,2,3),则Environment=“CUDA_VISIBLE_DEVICES=0,1,2,3。然后添加:

Environment="OLLAMA_PARALLEL=true"

这个参数让 Ollama 进行 多 GPU 自动并行计算,适用于大模型(如 DeepSeek-R1-32B)。
修改之后保存文件并退出,并重启ollama服务,运行:

sudo systemctl daemon-reload
sudo systemctl restart ollama

需要注意的是,对于创建的OLLAMA_MODELS路径文件夹,需要给它777权限,否则可能会启动失败:

sudo chmod 777 /XXX

(2)在离线环境下如何配置大模型*

1)部署完整的deepseek大模型,如:deepseek-r1:32B;
找一个可以上网的主机,执行:

ollama run deepseek-r1:32B

当大模型下载完成后,找到models目录(应该包含blobs和manifests两个子文件夹),将整个目录拷贝到服务器你新创建的路径下。
重启ollama,再执行ollama list命令,如果看到有模型了,说明成功。
启动模型:

ollama run DeepSeek-R1:32B

成功运行后将进入交互式命令行界面。
需要注意的是:默认情况下ollama模型的所在路径为(但本人尝试后发现不一定,所以最好在可以上网的主机上安装ollama时指定一个路径,那么下载的模型文件就会在你指定的这个路径下,方便寻找):

macOS: ~/.ollama/models 
Linux: **/usr/share/ollama/.ollama/models**
Windows: C:Users<username>.ollamamodels

2)部署蒸馏版模型,如:DeepSeek-R1-Distill-Llama-32B-Q5_K_M.gguf。
一、获取GGUF格式模型文件,可以在网上下载或通过ModelScope平台下载量化后的模型文件:

pip install modelscope
modelscope download --model unsloth/DeepSeek-R1-Distill-Llama-70B-GGUF DeepSeek-R1-Distill-Llama-70B-Q5_K_M.gguf --local_dir  /DeepSeek-R1-Distill-Llama-70B-GGUF

二、创建Modelfile配置文件:

vi Modelfile

然后补充配置文件:

# 这里填入下载的gguf文件路径
FROM /home/DeepSeek-R1-Distill-Llama-32B-GGUF/DeepSeek-R1-Distill-Llama-32B-Q5_K_M.gguf ##替换为你下载的文件路径和文件# 以下为模型模板配置
TEMPLATE """{{- if .System }}{{ .System }}{{ end }}
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1}}
{{- if eq .Role "user" }}<|User|>{{ .Content }}
{{- else if eq .Role "assistant" }}<|Assistant|>{{ .Content }}{{- if not $last }}<|end▁of▁sentence|>{{- end }}
{{- end }}
{{- if and $last (ne .Role "assistant") }}<|Assistant|>{{- end }}
{{- end }}"""PARAMETER stop "<|begin▁of▁sentence|>"
PARAMETER stop "<|end▁of▁sentence|>"
PARAMETER stop "<|User|>"
PARAMETER stop "<|Assistant|>"PARAMETER num_ctx 12800

这里From 模型是必须的,其它的可以自行设置。具体可以参考:https://github.com/ollama/ollama/blob/main/docs/modelfile.md#format

三、模型加载与运行:
导入模型,Modelfile路径替换为自己前面设置的。

ollama create DeepSeek-R1-Distill-Llama-32B-Q5_K_M -f /home/DeepSeek-R1-Distill-Llama-32B-GGUF/Modelfile

输入:ollama list如果实现预期输出,即证明安装成功。
启动模型:

ollama run DeepSeek-R1-Distill-Llama-32B-Q5_K_M:latest

成功运行后将进入交互式命令行界面。

目前部署结果是在Linux命令行运行的,交互体验较差。后续会继续实现前端可视化界面安装,提升用户体验。

部署过程中参考了以下几篇博客:

  1. linux离线安装Ollama并完成大模型配置(无网络):https://blog.csdn.net/m0_71142057/article/details/143186418
  2. ollama 部署 deepseek-r1 70B 模型完整指南:https://zhuanlan.zhihu.com/p/20441592371
  3. linux离线部署Ollama+Deepseek r1+open webui :https://blog.csdn.net/MrIqzd/article/details/145394179

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/896906.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

坐标变换介绍与机器人九点标定的原理

【备注】本文的C#代码在下面链接中可以下载:Opencv的C#九点标定代码资源-CSDN文库 https://download.csdn.net/download/qq_34047402/90452336 一、坐标变换的介绍 1.绕原点旋转的坐标变换 一个点(x,y)绕原点旋转u度,其旋转后的坐标(x1,y1)如何计算? 2.绕任意点的坐标变…

大语言模型 智能助手——既能生成自然语言回复,又能在必要时调用外部工具获取实时数据

示例代码&#xff1a; import json from langgraph.graph import Graph, END,StateGraph from langchain_core.utils.function_calling import convert_to_openai_function from langchain_community.tools.openweathermap import OpenWeatherMapQueryRun from langchain_core…

FPGA学习(一)——DE2-115开发板编程入级

FPGA学习&#xff08;一&#xff09;——DE2-115开发板编程入级 一、实验目的 通过 1 位全加器的详细设计&#xff0c;深入掌握原理图输入以及 Verilog 的两种设计方法&#xff0c;熟悉 Quartus II 13.0 软件的使用流程&#xff0c;以及在 Intel DE2-115 开发板上的硬件测试过…

中间件专栏之MySQL篇——MySQL事务原理、锁机制分析

MySQL的事务性也是其重要特性之一。 什么是事务&#xff1a;事务的本质是并发控制的单元&#xff0c;是用户定义的一个操作序列。这些操作要么都做&#xff0c;要么都不做&#xff0c;是 一个不可分割的工作单位。 目的&#xff1a;事务的目的在于将数据库从一种一致性状态转…

机器学习的三个基本要素

机器学习的基本要素包括模型、学习准则&#xff08;策略&#xff09;和优化算法三个部分。机器学习方法之间的不同&#xff0c;主要来自其模型、学习准则&#xff08;策略&#xff09;、优化算法的不同。 模型 机器学习首要考虑的问题是学习什么样的模型&#xff08;Model&am…

集成方案 | Docusign 能与哪些应用程序集成?

如何实现 Docusign 与多种系统平台之间的高效集成&#xff1f; 在企业跨境签约场景中&#xff0c;员工常常需要在电子签系统与办公应用&#xff08;如钉钉、企业微信&#xff09;、CRM、ERP 等系统之间来回切换&#xff0c;手动上传合同、下载签署文件并同步数据。这种繁琐的操…

2025华为OD机试真题目录【E卷+A卷+B卷+C卷+D卷】持续收录中...

摘要 本专栏提供2025最新最全的华为OD机试真题库&#xff08;EABCD卷&#xff09;&#xff0c;包括100分和200分题型。题目包含题目描述、输入描述、用例、备注和解题思路、多种语言解法&#xff08;Java/JS/Py/C/C&#xff09;。希望小伙伴们认真学习、顺利通过。 声明 本专…

广域互联网关键技术详解(GRE/LSTP/IPsec/NAT/SAC/SPR)

《广域互联网关键技术详解》属于博主的“广域网”专栏&#xff0c;若想成为HCIE&#xff0c;对于广域网相关的知识需要非常了解&#xff0c;更多关于广域网的内容博主会更新在“广域网”专栏里&#xff0c;请持续关注&#xff01; 一.前言 广域互联技术纷杂多样&#xff0c;不…

AF3 _correct_post_merged_feats函数解读

AlphaFold3 msa_pairing 模块的 _correct_post_merged_feats 函数用于对合并后的特征进行修正,确保它们符合预期的格式和要求。这包括可能的对特征值进行调整或进一步的格式化,确保合并后的 FeatureDict 适合于后续模型的输入。 主要作用是: 在多链蛋白质 MSA(多序列比对)…

Docker 学习(三)——数据管理

容器中的管理数据主要有两种方式&#xff1a; 数据卷 &#xff08;Data Volumes&#xff09;&#xff1a; 容器内数据直接映射到本地主机环境&#xff1b; 数据 卷容器&#xff08; Data Volume Containers&#xff09;&#xff1a; 使用特定容器维护数据卷 1.数据卷 数据卷…

基于SSM+Vue+uniapp的考研交流(带商城)小程序+LW示例参考

系列文章目录 1.基于SSM的洗衣房管理系统原生微信小程序LW参考示例 2.基于SpringBoot的宠物摄影网站管理系统LW参考示例 3.基于SpringBootVue的企业人事管理系统LW参考示例 4.基于SSM的高校实验室管理系统LW参考示例 5.基于SpringBoot的二手数码回收系统原生微信小程序LW参考示…

2025-03-04 学习记录--C/C++-PTA 练习5-3 字符金字塔

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; 一、题目描述 ⭐️ 二、解题步骤 ⭐️ 第1步、把字符和一个空格看作整体&#xff0c;即"G_"&#xff1b; 第2步、外…

DeepSeek集成到VScode工具,让编程更高效

DeepSeek与VScode的强强联合&#xff0c;为编程效率树立了新标杆。 DeepSeek&#xff0c;一款卓越的代码搜索引擎&#xff0c;以其精准的索引和高速的检索能力&#xff0c;助力开发者在浩瀚的代码海洋中迅速定位关键信息。 集成至VScode后&#xff0c;开发者无需离开熟悉的编辑…

前端-css(预编译器sass)

1.sass(scss->sass第三代) Sass3 -> Scss(Sassy CSS),SCSS(Sassy CSS) 是 CSS 语法的扩展. 2.scss注释 Sass 支持标准的 CSS 多行注释 /* */&#xff0c;以及单行注释 //&#xff0c;前者会 被完整输出到编译后的 CSS 文件中&#xff0c;而后者则不会 3.scss定义变量 …

【计算机网络入门】初学计算机网络(十一)重要

目录 1. CIDR无分类编址 1.1 CIDR的子网划分 1.1.1 定长子网划分 1.1.2 变长子网划分 2. 路由聚合 2.1 最长前缀匹配原则 3. 网络地址转换NAT 3.1 端口号 3.2 IP地址不够用&#xff1f; 3.3 公网IP和内网IP 3.4 NAT作用 4. ARP协议 4.1 如何利用IP地址找到MAC地址…

Android 获取jks的SHA1值:java.io.IOException: Invalid keystore format

命令生成 keytool -list -v -keystore 全路径.jks -alias 别名 -storepass 密码 -keypass 密码 1、遇到 的问题&#xff1a; 通过快捷键 ‘win r’ 启动的小黑框运行上面的命令会出现下面这个错误keytool 错误: java.io.IOException: Invalid keystore format 2、解决问题 …

掌握 ElasticSearch 聚合查询:Aggregations 入门与实战

掌握 ElasticSearch 聚合查询&#xff1a;Aggregations 入门与实战 一、引言 (Introduction)二、数据准备 (Data Preparation)2.1 创建索引 (Create Index)2.2 批量导入数据 (Bulk Import Data) 三、聚合查询基础 (Aggregation Basics)3.1 什么是聚合查询&#xff1f;(What are…

Microsoft.Office.Interop.Excel 的简单操作

Microsoft.Office.Interop.Excel 的简单操作 1、安装 Microsoft.Office.Interop.Excel2、声明引用 Microsoft.Office.Interop.Excel3、简单的新建 EXCEL 操作代码4、将 DataGridView 表数据写到 EXCEL 操作代码5、将 EXCEL 表数据读取到 C# 数据表 DataTable 操作代码 1、安装 …

LLM 对话框组件 | 字节青训营前端开发项目

系统介绍 LLM对话框项目系统介绍 一、项目概述 选题背景随着人工智能技术的飞速发展,自然语言处理(NLP)领域取得了显著进展,其中对话系统(Dialog System)作为NLP的重要应用方向,正逐渐渗透到人们的日常生活中。从智能客服到语音助手,从智能家居到在线教育,对话系统以…

k8s命名空间和资源配额

在现代的云计算环境中&#xff0c;容器化技术已成为主流。而 Kubernetes&#xff08;简称 k8s&#xff09;作为一项开源的容器编排系统&#xff0c;广泛应用于各类场景。本文将详细介绍关于 k8s 中的命名空间和资源配额&#xff0c;帮助你更好地理解和管理你的集群资源。 k8s …