【NLP 25、模型训练方式】

目录

一、按学习范式分类

1. 监督学习(Supervised Learning)

2. 无监督学习(Unsupervised Learning)

3. 半监督学习(Semi-supervised Learning)

4. 强化学习(Reinforcement Learning, RL)

5. 迁移学习(Transfer Learning)

6. 自监督学习(Self-supervised Learning)

二、按训练技术分类

1. 数据增强(Data Augmentation)

2. 正则化(Regularization)

3. 优化算法(Optimization Algorithms)

4. 模型集成(Ensemble Learning)

5. 分布式训练(Distributed Training)

三、按任务特性分类

1. 在线学习(Online Learning)

2. 元学习(Meta-Learning)

3. 课程学习(Curriculum Learning)

四、典型应用场景

五、选择训练方法的关键因素


你的痛苦,我都心疼,想为你解决

                                                —— 25.2.15

一、按学习范式分类

1. 监督学习(Supervised Learning)

  • 核心思想:使用带有标签(已知输入-输出对)的数据训练模型。

  • 常见任务:分类(如垃圾邮件识别)、回归(如房价预测)。

  • 典型方法

    • 梯度下降法:通过反向传播调整模型参数,最小化损失函数。

    • 批量训练(Batch Training):每次迭代使用全部数据计算梯度。

    • 小批量梯度下降(Mini-batch Gradient Descent):每次使用一小部分数据(平衡速度和稳定性)。

    • 随机梯度下降(SGD):每次使用单个样本(收敛快但噪声大)。


2. 无监督学习(Unsupervised Learning)

  • 核心思想:从无标签数据中学习数据的内在结构。

  • 常见任务:聚类(如客户分群)、降维(如PCA)、生成(如GAN生成图像)。

  • 典型方法

    • K-Means聚类:通过迭代优化簇中心和样本分配。

    • 自编码器(Autoencoder):学习数据的低维表示。

    • 生成对抗网络(GAN):生成器和判别器对抗训练。


3. 半监督学习(Semi-supervised Learning)

  • 核心思想:结合少量标注数据和大量未标注数据训练。

  • 适用场景:标注成本高(如医学图像分析)。

  • 典型方法

    • 自训练(Self-training):用已训练模型预测未标注数据,扩展训练集。

    • 一致性正则化(Consistency Regularization):鼓励模型对扰动后的未标注数据预测一致(如FixMatch)。


4. 强化学习(Reinforcement Learning, RL)

  • 核心思想:通过试错与奖励机制训练智能体(Agent)。

  • 常见任务:游戏AI(如AlphaGo)、机器人控制。

  • 典型方法

    • Q-Learning:学习状态-动作价值函数。

    • 策略梯度(Policy Gradient):直接优化策略函数。

    • 深度确定性策略梯度(DDPG):结合深度学习和Actor-Critic框架。


5. 迁移学习(Transfer Learning)

  • 核心思想:将预训练模型的知识迁移到新任务。

  • 典型应用

    • 微调(Fine-tuning):在预训练模型(如BERT、ResNet)基础上调整参数。

    • 特征提取:冻结预训练层,仅训练新分类层。


6. 自监督学习(Self-supervised Learning)

  • 核心思想:通过设计辅助任务(Pretext Task)自动生成标签。

  • 典型方法

    • 对比学习(Contrastive Learning):如SimCLR,通过对比样本增强视图。

    • 掩码语言建模(Masked Language Modeling):如BERT预测被遮蔽的词语。


二、按训练技术分类

1. 数据增强(Data Augmentation)

  • 目的:增加数据多样性,防止过拟合。

  • 方法

    • 图像:旋转、裁剪、加噪声。

    • 文本:同义词替换、回译(Back Translation)。

    • 音频:变速、加背景噪声。


2. 正则化(Regularization)

  • 目的:限制模型复杂度,提高泛化能力。

  • 方法

    • L1/L2正则化:在损失函数中添加参数惩罚项。

    • Dropout:随机丢弃神经元(如全连接层设置0.5丢弃率)。

    • 早停法(Early Stopping):验证集性能不再提升时终止训练。


3. 优化算法(Optimization Algorithms)

  • 常用优化器

    • Adam:结合动量(Momentum)和自适应学习率(如NLP任务常用)。

    • RMSProp:自适应调整学习率(适合非平稳目标)。

    • AdaGrad:稀疏数据优化(如推荐系统)。


4. 模型集成(Ensemble Learning)

  • 目的:结合多个模型提升鲁棒性。

  • 方法

    • Bagging:并行训练多个模型并投票(如随机森林)。

    • Boosting:串行训练,纠正前序模型的错误(如XGBoost)。

    • Stacking:用元模型组合基模型的输出。


5. 分布式训练(Distributed Training)

  • 目的:加速大规模数据/模型的训练。

  • 方法

    • 数据并行:多GPU同步训练(如PyTorch的DataParallel)。

    • 模型并行:将模型拆分到不同设备(如大型Transformer)。


三、按任务特性分类

1. 在线学习(Online Learning)

  • 特点:模型逐步更新,适应数据流(如推荐系统实时反馈)。

2. 元学习(Meta-Learning)

  • 特点:学习“如何学习”,快速适应新任务(如小样本学习)。

3. 课程学习(Curriculum Learning)

  • 特点:从简单到复杂逐步训练(模仿人类学习过程)。


四、典型应用场景

方法适用场景
监督学习数据标注充足(如图像分类、文本情感分析)
半监督学习标注数据少,未标注数据多(如医学影像)
强化学习动态决策场景(如游戏、机器人控制)
迁移学习目标领域数据少,但有相关预训练模型(如NLP)
自监督学习无标注数据丰富(如预训练语言模型)

五、选择训练方法的关键因素

  1. 数据量级:数据少时优先迁移学习或半监督学习。

  2. 标注成本:标注困难时考虑自监督或弱监督学习。

  3. 任务类型:分类/回归用监督学习,生成任务用GAN或VAE。

  4. 实时性要求:在线学习适合需要快速更新的场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/895836.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1-知识图谱-概述和介绍

知识图谱:浙江大学教授 陈华军 知识图谱 1课时 http://openkg.cn/datasets-type/ 知识图谱的价值 知识图谱是有什么用? 语义搜索 问答系统 QA问答对知识图谱:结构化图 辅助推荐系统 大数据分析系统 自然语言理解 辅助视觉理解 例…

零基础学QT、C++(一)安装QT

目录 如何快速学习QT、C呢? 一、编译器、项目构建工具 1、编译器(介绍2款) 2、项目构建工具 二、安装QT 1、下载QT安装包 2、运行安装包 3、运行QT creator 4、导入开源项目 总结 闲谈 如何快速学习QT、C呢? 那就是项目驱动法&…

STM32外设SPI FLASH应用实例

STM32外设SPI FLASH应用实例 1. 前言1.1 硬件准备1.2 软件准备 2. 硬件连接3. 软件实现3.1 SPI 初始化3.2 QW128 SPI FLASH 驱动3.3 乒乓存储实现 4. 测试与验证4.1 数据备份测试4.2 数据恢复测试 5 实例5.1 参数结构体定义5.2 存储参数到 SPI FLASH5.3 从 SPI FLASH 读取参数5…

Leetcode2080:区间内查询数字的频率

题目描述: 请你设计一个数据结构,它能求出给定子数组内一个给定值的 频率 。 子数组中一个值的 频率 指的是这个子数组中这个值的出现次数。 请你实现 RangeFreqQuery 类: RangeFreqQuery(int[] arr) 用下标从 0 开始的整数数组 arr 构造…

Spring Boot自动装配:约定大于配置的魔法解密

#### 一、自动装配的哲学思考 在传统Spring应用中,开发者需要手动配置大量的XML或JavaConfig。Spring Boot通过自动装配机制实现了**约定大于配置**的设计理念,其核心思想可以概括为: 1. **智能预设**:基于类路径检测自动配置 2…

Fiddler笔记

文章目录 一、与F12对比二、核心作用三、原理四、配置1.Rules:2.配置证书抓取https包3.设置过滤器4、抓取App包 五、模拟弱网测试六、调试1.线上调试2.断点调试 七、理论1.四要素2.如何定位前后端bug 注 一、与F12对比 相同点: 都可以对http和https请求进行抓包分析…

Python爬虫-猫眼电影的影院数据

前言 本文是该专栏的第46篇,后面会持续分享python爬虫干货知识,记得关注。 本文笔者以猫眼电影为例子,获取猫眼的影院相关数据。 废话不多说,具体实现思路和详细逻辑,笔者将在正文结合完整代码进行详细介绍。接下来,跟着笔者直接往下看正文详细内容。(附带完整代码) …

linux笔记:shell中的while、if、for语句

在Udig软件的启动脚本中使用了while循环、if语句、for循环,其他内容基本都是变量的定义,所以尝试弄懂脚本中这三部分内容,了解脚本执行过程。 (1)while循环 while do循环内容如下所示,在循环中还用了expr…

利用分治策略优化快速排序

1. 基本思想 分治快速排序(Quick Sort)是一种基于分治法的排序算法,采用递归的方式将一个数组分割成小的子数组,并通过交换元素来使得每个子数组元素按照特定顺序排列,最终将整个数组排序。 快速排序的基本步骤&#…

从零到一实现微信小程序计划时钟:完整教程

在本教程中,我们将一起实现一个微信小程序——计划时钟。这个小程序的核心功能是帮助用户添加任务、设置任务的时间范围,并且能够删除和查看已添加的任务。通过以下步骤,我们将带你从零开始实现一个具有基本功能的微信小程序计划时钟。 项目…

idea日常报错之UTF-8不可映射的字符

目录 一、UTF-8不可映射的字符的解决 1、出现这种报错的情形 2、具体解决办法 前言: 在我们日常代码编写的时候可能会遇到各式各样的错误,有时候并不是你改动了代码,而是莫名其妙就出现的报错,今天我就遇到一个在maven编译的时候…

人工智能技术-基于长短期记忆(LSTM)网络在交通流量预测中的应用

人工智能技术-基于长短期记忆(LSTM)网络在交通流量预测中的应用 基于人工智能的智能交通管理系统 随着城市化进程的加快,交通问题日益严峻。为了解决交通拥堵、减少交通事故、提高交通管理效率,人工智能(AI&#xff…

HTTP FTP SMTP TELNET 应用协议

1. 标准和非标准的应用协议 标准应用协议: 由标准化组织(如 IETF,Internet Engineering Task Force)制定和维护,具有广泛的通用性和互操作性。这些协议遵循严格的规范和标准,不同的实现之间可以很好地进行…

Matlab离线安装硬件支持包的方法

想安装支持树莓派的包,但是发现通过matlab安装需要续订维护服务 可以通过离线的方式安装。 1. 下载SupportSoftwareDownloader Support Software Downloader - MATLAB & Simulink 登录账号 选择对应的版本 2. 选择要安装的包 3.将下载的包copy到安装目录下 …

Django REST Framework (DRF) 中用于构建 API 视图类解析

Django REST Framework (DRF) 提供了丰富的视图类,用于构建 API 视图。这些视图类可以分为以下几类: 1. 基础视图类 这些是 DRF 中最基础的视图类,通常用于实现自定义逻辑。 常用类 APIView: 最基本的视图类,所有其…

MyBatis拦截器终极指南:从原理到企业级实战

在本篇文章中,我们将深入了解如何编写一个 MyBatis 拦截器,并通过一个示例来展示如何在执行数据库操作(如插入或更新)时,自动填充某些字段(例如 createdBy 和 updatedBy)信息。本文将详细讲解拦…

137,【4】 buuctf web [SCTF2019]Flag Shop

进入靶场 都点击看看 发现点击work会增加¥ 但肯定不能一直点下去 抓包看看 这看起来是一个 JWT(JSON Web Token)字符串。JWT 通常由三部分组成,通过点(.)分隔,分别是头部(Header&…

twisted实现MMORPG 游戏数据库操作封装设计与实现

在设计 MMORPG(大规模多人在线角色扮演游戏)时,数据库系统是游戏架构中至关重要的一部分。数据库不仅承担了游戏中各种数据(如玩家数据、物品数据、游戏世界状态等)的存储和管理任务,还必须高效地支持并发访…

【R语言】聚类分析

聚类分析是一种常用的无监督学习方法,是将所观测的事物或者指标进行分类的一种统计分析方法,其目的是通过辨认在某些特征上相似的事物,并将它们分成各种类别。R语言提供了多种聚类分析的方法和包。 方法优点缺点适用场景K-means计算效率高需…

超全Deepseek资料包,deepseek下载安装部署提示词及本地部署指南介绍

该资料包涵盖了DeepSeek模型的下载、安装、部署以及本地运行的详细指南,适合希望在本地环境中高效运行DeepSeek模型的用户。资料包不仅包括基础的安装步骤,还提供了68G多套独立部署视频教程教程,针对不同硬件配置的模型选择建议,以…