Python + WhisperX:解锁语音识别的高效新姿势

大家好,我是烤鸭:

   最近在尝试做视频的质量分析,打算利用asr针对声音判断是否有人声,以及识别出来的文本进行进一步操作。asr看了几个开源的,最终选择了openai的whisper,后来发现性能不行,又换了whisperX。这是一篇实战和代码为主的文章。

引言

OpenAI的Whisper是一款强大的自动语音识别(ASR)模型,它支持多语种识别,包括中文,且经过大量的多语言和多任务监督数据训练,具有出色的鲁棒性和准确性。Python作为一种功能强大的编程语言,其丰富的库和简洁的语法使其成为实现语音识别功能的理想选择。本文将介绍如何利用Python集成Whisper,实现高效的语音识别。

目前一天小千的视频调用,平均时长3分钟。显卡是4090,平均识别耗时30s以内,业务无压力。

Whisper模型简介

Whisper是一个开源的语音识别模型,它基于Transformer架构,通过从网络上收集的680,000小时多语言数据进行训练,能够实现对多种语言的准确识别。此外,该模型对口音、背景噪音和技术语言具有很好的鲁棒性,使得其在实际应用中具有广泛的应用前景。

WhisperX 地址:
https://github.com/m-bain/whisperX

安装环境

linux
显卡是 4090
cuda pytorch
ffmpeg

python 需要的依赖

pip install --no-cache-dir flask -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir ffmpeg-python -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir wheel -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir zhconv -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir numpy -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir openai-whisper -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir kafka-python -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir fastapi -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir uvicorn -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir psutil -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir gputil -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir requests -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir use-nacos -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir pyyaml -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir rocketmq-client-python -i https://mirrors.aliyun.com/pypi/simple

预期的功能

我想实现的是单台机器性能打满,并行识别asr,接口可以无限制接收请求,异步返回结果。

接口层

使用的是 fastapi 框架

import concurrent.futures
import os
import timeimport ffmpeg
import platform
import uvicorn
import asyncio
import psutil
from fastapi import FastAPI, BackgroundTasks, HTTPException, status, Query
from fastapi.responses import JSONResponse
import GPUtil
import requests
import jsonfrom dict_time import TimedMap
from parse_video_param import VideoRequest
from parse_video_callback_param import VideoCallbackRequest
from api_result import ApiResult
from whisper_processor import video_process
from whisperX_processor20241119 import video_process_whisperX
from logging_config import KAFKA_LOGGER
from nacos_config20241119 import register_nacosapp = FastAPI()
executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)  # 线程池
# 定义CPU使用率阈值
threshold_cpu_usage = 95  # 例如,你希望CPU使用率不超过95%
threshold_gpu_usage_MB = 2400  # 例如,你希望显存使用大小 MB
timed_map = TimedMap()@app.post("/xxxx-video/whisperx")
async def parse_video(request: VideoRequest, background_tasks: BackgroundTasks):if not request or not request.path:raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="No video URL provided")print(f"parse_video, params:{request}")# 将处理任务添加到后台任务中,以便不阻塞主线程background_tasks.add_task(process_video_whisperx, request, background_tasks)# 立即返回处理中响应,告诉客户端请求已经被接收并正在处理api_result = ApiResult(1, "success", "", "")return JSONResponse(api_result.to_dict(), status_code=status.HTTP_200_OK)
# 异步函数来下载和处理视频
async def process_video_whisperx(request: VideoRequest, background_tasks: BackgroundTasks):def sync_process_video_whisperx(request):text = ''try:# 记录方法耗时start_time_single = time.time()# 下载视频并保存到临时文件url = request.pathchunk_size = request.chunk_size# 如果当前cpu使用率超过80%,就把该数据重新加到任务里# 获取当前CPU使用率cpu_usage = psutil.cpu_percent(interval=1, percpu=False)print(f"当前cpu利用率:{cpu_usage}")KAFKA_LOGGER.info(f"当前cpu利用率:{cpu_usage}")# 获取所有GPU的信息gpus = GPUtil.getGPUs()isGpuSuffiencent = True# 判断CPU使用率是否达到阈值if cpu_usage <= threshold_cpu_usage or isGpuSuffiencent:# 解析音频地址wavPath = getWav(url)print(f"mp3 url={wavPath}")# 不存在再去生成# 异步处理方法,解析音频这块可以忽略,也可以直接用视频地址if(not os.path.exists(wavPath)):(ffmpeg.input(url).output(wavPath, acodec='mp3').global_args('-loglevel', 'quiet').run())# 使用whisper处理音频text = process_audio_with_whisperx(wavPath, chunk_size)end_time_single = time.time()# 创建任务并添加到事件循环中,通知业务方asyncio.run(callback_task(request, text))print(f"视频地址:{url}, 函数执行耗时: {end_time_single - start_time_single}秒")KAFKA_LOGGER.info(f"视频地址:{url}, 函数执行耗时: {end_time_single - start_time_single}秒")# 清理临时文件os.remove(wavPath)else:print(f"当前cpu已超限,该视频重新加入队列:{url}")KAFKA_LOGGER.info(f"当前cpu已超限,该视频重新加入队列:{url}")# 暂停5秒time.sleep(5)# 重新加到队列里# 将处理任务添加到后台任务中,以便不阻塞主线程background_tasks.add_task(process_video_whisperx, request, background_tasks)except Exception as ex:print(f"sync_process_video error: {str(ex)}")KAFKA_LOGGER.error(f"sync_process_video error: {ex}")return textloop = asyncio.get_running_loop()# 使用线程池运行同步函数,避免阻塞异步事件循环return await loop.run_in_executor(executor, sync_process_video_whisperx, request)
# 获取文件路径
def getWav(input_video):try:# 判断系统是windows还是linuxoperating_system = platform.system()# 判断操作系统类型if operating_system == 'Windows':print("当前系统是Windows")audio_path = "C:\\Users\\xxx\\Downloads\\"else :audio_path = "/tmp/"# 从原始路径中获取文件名filename = os.path.basename(input_video)# 生成新文件的完整路径filename_without_extension = os.path.splitext(filename)[0]# 使用ffmpeg-python提取音频new_filename = os.path.join(audio_path, filename_without_extension) + ".mp3"except Exception as ex1:print("getWav ex:", str(ex1))return new_filename
# 音频解析
def process_audio_with_whisperx(audio_file_path: str, chunk_size: int) -> str:text = video_process_whisperX(audio_file_path, chunk_size)return text
# 异步回调
async def callback_task(request: VideoRequest, text: str):# 创建任务并添加到事件循环中task = asyncio.create_task(callback(request, text))# 等待任务完成await task
# 回调请求方法
async def callback(request: VideoRequest, text: str):# 目标URLurl = request.callback_url# JSON格式的参数data = {'id': request.id,'text': text,# 添加更多键值对...}# 设置一些键值对timed_map.set(request.path, json.dumps(data), timeout=1800)# 设置请求头,告诉服务器我们发送的是JSON数据headers = {'Content-Type': 'application/json'}# 设置超时时间,这里设置为5秒timeout = 5.0# 发送POST请求response = requests.post(url, data=json.dumps(data), headers=headers, timeout=timeout)print(f"url:{url},data: {json.dumps(data)},headers:{headers},response:{response}")# 检查请求是否成功if response.status_code == 200:# 请求成功,处理响应内容print("请求成功")print(response.json())  # 如果响应内容是JSON格式,可以直接解析else:# 请求失败,打印错误信息print(f"请求失败,状态码:{response.status_code}")print(response.text)  # 打印响应的文本内容
# 启动应用
if __name__ == "__main__":register_nacos()uvicorn.run(app, host="0.0.0.0", port=5000)    

whisperX

import whisperx
from whisperx.asr import FasterWhisperPipeline
import time
import torch
import gc
import osENV = os.environ.get('ENV', 'development')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if ENV == 'production':batch_size = 16compute_type = "float16"model_name = "large-v2"
else:# reduce if low on GPU membatch_size = 4# compute_type = "float16"  # change to "int8" if low on GPU mem (may reduce accuracy)# change to "int8" if low on GPU mem (may reduce accuracy)compute_type = "int8"model_name = "medium"
class WhisperXProcessor:fast_model: FasterWhisperPipelinedef loadModel(self):# 1. Transcribe with original whisper (batched)self.fast_model = whisperx.load_model("medium", device.type, compute_type=compute_type)print("模型加载完成")def asr(self, filePath: str, chunk_size: int):print(f'asr start filePath:{filePath}')start = time.time()audio = whisperx.load_audio(filePath)result = self.fast_model.transcribe(audio, batch_size=batch_size, chunk_size = chunk_size)print(result)end = time.time()print('识别使用的时间:', end - start, 's')torch.cuda.empty_cache()gc.collect()return resultdef video_process_whisperX(audio_path, chunk_size):app = WhisperXProcessor()app.loadModel()text = app.asr(audio_path, chunk_size)return text

结果验证

发送请求

curl -XPOST 'http://localhost:5000/xxxx-video/whisperX' -H 'Content-Type: application/json' -d '{"id":1,"path":"https://vc16-bd1-pl-agv.autohome.com.cn/video-26/0A33363922E51BDE/2025-02-10/FC68CC971BB8B9A46F15C4841F4F2CE2-200-wm.mp4?key=F77E8D3251C4560FA47E36563A5D5668&time=1739187850","callback_url":"http://localhost:8088/xxx/demo/testParseVideo"}'

结果日志,2分钟的视频,大概用了60s。

在这里插入图片描述

文章参考

ASR强力模型「Whisper」:解密Whisper

Python实现语音识别(whisperX)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/895497.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

$ npx electron-forge import 一直报权限问题 resource busy or locked,

jackLAPTOP-7DHDAAL0 MINGW64 /e/project/celetron-project/my-electron-app (master) $ npx electron-forge import > Checking your system > Checking git exists > Checking node version > Checking packageManager version √ Found node22.14.0 √ Found gi…

mapbox 从入门到精通 - 目录

&#x1f468;‍⚕️ 主页&#xff1a; gis分享者 &#x1f468;‍⚕️ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕️ 收录于专栏&#xff1a;mapbox 从入门到精通 文章目录 一、&#x1f340;总目录1.1 ☘️ mapbox基础1.2 ☘️…

Kotlin 2.1.0 入门教程(十五)继承、重写、派生类初始化顺序

继承 所有类都有一个共同的超类 Any&#xff0c;对于没有声明超类型的类来说&#xff0c;Any 是其默认的超类&#xff1a; // 隐式继承自 Any。 class ExampleAny 有三个方法&#xff1a;equals()、hashCode() 和 toString()。因此&#xff0c;所有类都定义了这些方法。 默认…

sqlilabs--小实验

一、先盲注判断 ?id1 and sleep(2)-- 如果发现页面存在注点&#xff0c;使用时间盲注脚本进行注入 import requestsdef inject_database(url):name for i in range(1, 20): # 假设数据库名称长度不超过20low 48 # 0high 122 # zmiddle (low high) // 2while low &l…

【数字】异步FIFO面试的几个小问题与跨时钟域时序约束

入门数字设计的时候&#xff0c;跨时钟域的数据处理是绕不开的课题&#xff0c;特别是多比特数据跨时钟域时&#xff0c;都会采用异步FIFO的方法。 异步FIFO中涉及较多的考点这里记录几个以供大家参考。 1. 异步FIFO的空满判断分别在哪个域&#xff1f; 根据异步FIFO的结构&…

浅谈Java Spring Boot 框架分析和理解

Spring Boot是一个简化Spring开发的框架&#xff0c;它遵循“约定优于配置”的原则&#xff0c;通过内嵌的Tomcat、Jetty或Undertow等容器&#xff0c;使得开发者能够快速构建独立运行的、生产级别的基于Spring框架的应用程序。Spring Boot包含了大量的自动配置功能&#xff0c…

算法06-回溯算法

一、回溯算法详解 回溯算法是一种通过逐步构建解决方案来解决问题的算法。它通常用于解决组合问题、排列问题、子集问题等。回溯算法的核心思想是“试错”&#xff0c;即在每一步尝试所有可能的选项&#xff0c;如果发现当前选择无法达到目标&#xff0c;就回退到上一步&#…

RabbitMQ学习—day2—安装

目录 普通Linux安装 安装RabbitMQ 1、下载 2、安装 3. Web管理界面及授权操作 Docker 安装 强力推荐学docker&#xff0c;使用docker安装 普通Linux安装 安装RabbitMQ 1、下载 官网下载地址&#xff1a;https://www.rabbitmq.com/download.html(opens new window) 这…

降本增效 - VGF 构建轻量高性能日志管理平台

VFG 技术架构 Filebeat 接收Syslog &#xff0c;并进行日志分段&#xff0c;VictoriaLogs 持久化存储日志 &#xff0c;Grafana 可视化、数据查询、告警、数据导出。 为什么要用VictoriaLogs &#xff1f; 与Elasticsearch /Grafana Loki相比几十倍的CPU/内存/存储资源占用的…

初识camel智能体(一)

同目录下配置环境变量.env&#xff0c;内容如下&#xff0c; apikey从魔搭社区获取 QWEN_API_KEY4ff3ac8f-aebc******** 先上干货代码&#xff0c;主代码如下&#xff1a; from colorama import Forefrom camel.societies import RolePlaying from camel.utils import prin…

介绍 Liquibase、Flyway、Talend 和 Apache NiFi:选择适合的工具

在现代软件开发中&#xff0c;尤其是在数据库管理和数据集成方面&#xff0c;选择合适的工具至关重要。本文将介绍四个流行的工具&#xff1a;Liquibase、Flyway、Talend 和 Apache NiFi&#xff0c;分析它们的应用、依赖以及如何选择适合的工具。 1. Liquibase 简介&#xff…

Docker使用指南与Dockerfile文件详解:从入门到实战

Docker使用指南与Dockerfile文件详解:从入门到实战 文章目录 **Docker使用指南与Dockerfile文件详解:从入门到实战****引言****第一部分:Docker 核心概念速览****1. Docker 基础架构****2. Docker 核心命令****第二部分:Dockerfile 文件深度解析****1. Dockerfile 是什么?…

Qt工作总结03 <qSort按某一属性进行排序>

1. 代码样例 QList<QGraphicsTextItem *> Lst;qSort(Lst.begin(),Lst.end(),[](const QGraphicsTextItem *itemA,const QGraphicsTextItem *itemB) {return itemA->toPlainText().toDouble() < itemB->toPlainText().toDouble(); }); 2. 参考 QList 按结构体…

深度学习|表示学习|Instance Normalization 全面总结|26

如是我闻&#xff1a; 1. Instance Normalization&#xff08;IN&#xff09; Instance Normalization&#xff08;IN&#xff09;最早由 Ulyanov et al.&#xff08;2017&#xff09; 提出&#xff0c;主要用于 风格迁移&#xff08;Style Transfer&#xff09; 任务。它的核…

如何保持 mysql 和 redis 中数据的一致性?PegaDB 给出答案

MySQL 与 Redis 数据保持一致性是一个常见且复杂的问题&#xff0c;一般来说需要结合多种策略来平衡性能与一致性。 传统的解决策略是先读缓存&#xff0c;未命中则读数据库并回填缓存&#xff0c;但方式这种维护成本较高。 随着云数据库技术的发展&#xff0c;目前国内云厂商…

探索ELK 的魅力

在大数据时代&#xff0c;海量日志和数据的收集、存储、处理与可视化分析变得越来越重要。而 ELK 堆栈&#xff0c;由 Elasticsearch、Logstash、Beats 和 Kibana 组成&#xff0c;正是一个强大的开源解决方案&#xff0c;帮助开发者和运维人员高效管理和分析日志数据。本文将详…

用vue3写一个好看的wiki前端页面

以下是一个使用 Vue 3 Element Plus 实现的 Wiki 风格前端页面示例&#xff0c;包含现代设计、响应式布局和常用功能&#xff1a; <template><div class"wiki-container"><!-- 头部导航 --><el-header class"wiki-header"><d…

深度学习实战基础案例——卷积神经网络(CNN)基于DenseNet的眼疾检测|第4例

文章目录 前言一、数据准备二、项目实战2.1 设置GPU2.2 数据加载2.3 数据预处理2.4 数据划分2.5 搭建网络模型2.6 构建densenet1212.7 训练模型2.8 结果可视化 三、UI设计四、结果展示总结 前言 在当今社会&#xff0c;眼科疾病尤其是白内障对人们的视力健康构成了严重威胁。白…

DeepSeek的开源核爆:当技术民主化重构AI权力版图

2025年2月&#xff0c;全球AI产业正经历着由DeepSeek掀起的链式反应——这个首个开源千亿参数多模态模型的企业&#xff0c;用开放战略在技术壁垒森严的AI战场投下"制度性核弹"。其贡献不在于单纯的技术突破&#xff0c;而在于通过开源协议实现了三重维度的大爆炸&am…

代码随想录二叉树篇(含源码)

二叉树与递归 前言226.翻转二叉树算法思路及代码solution 1 用分解问题的思路来解决solution 2 用遍历的思路来解决 101.对称二叉树算法思路及代码solution 104.二叉树的最大深度算法思路及代码solution 1 遍历solution 2 分解问题 111.二叉树的最小深度算法思路及代码solution…