每日OJ题_01背包①_牛客DP41 【模板】01背包(滚动数组优化)

目录

牛客DP41 【模板】01背包

问题一解析

问题二解析

解析代码

滚动数组优化代码


牛客DP41 【模板】01背包

【模板】01背包_牛客题霸_牛客网

#include <iostream>
using namespace std;int main() {int a, b;while (cin >> a >> b) { // 注意 while 处理多个 casecout << a + b << endl;}
}
// 64 位输出请用 printf("%lld")

问题一解析

背包问题的状态表示非常经典,如果不知道怎么来的,可以先把它当成一个模板。

以某个位置为结尾,结合题目要求,定义一个状态表示:

dp[i][j] 表示:从前 i 个物品中挑选,总体积不超过 j ,所有的选法中,能挑选出来的最大价值。

状态转移方程:

线性 dp 状态转移方程分析方式,一般都是根据最后一步的状况,来分情况讨论:

  • 不选第 i 个物品:相当于就是去前 i - 1 个物品中挑选,并且总体积不超过 j 。此时 dp[i][j] = dp[i - 1][j] ;
  • 选择第 i 个物品:那么就只能去前 i - 1 个物品中,挑选总体积不超过 j - v[i] 的物品。此时 dp[i][j] = dp[i - 1][j - v[i]] + w[i] ; 。但是这种状态不一定存在,要判断 j >= v[i]。

综上,状态转移方程为: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]) ;


初始化、填表顺序、返回值:

        多加一行,方便初始化,此时仅需将第一行初始化为 0 即可。因为什么也不选,也能满足体积不小于 j 的情况,此时的价值为 0 。填表顺序从左往右,最后返回dp[n][V] ; 


问题二解析

        第二问仅需微调一下 dp 过程的五步即可。 因为有可能凑不齐 j 体积的物品,因此把不合法的状态设置为 -1 。

以某个位置为结尾,结合题目要求,定义一个状态表示:

dp[i][j] 表示:从前 i 个物品中挑选,总体积正好等于 j ,所有的选法中,能挑选出来的最大价值。

状态转移方程:

线性 dp 状态转移方程分析方式,一般都是根据最后一步的状况,来分情况讨论:

  • 不选第 i 个物品:相当于就是去前 i - 1 个物品中挑选,并且总体积不超过 j 。此时 dp[i][j] = dp[i - 1][j] ;
  • 选择第 i 个物品:那么就只能去前 i - 1 个物品中,挑选总体积不超过 j - v[i] 的物品。此时 dp[i][j] = dp[i - 1][j - v[i]] + w[i] ; 。但是这种状态不一定存在,不仅要判断 j >= v[i] 还要判断 dp[i - 1][j - v[i]] 表示的情况是否存在,也就是 dp[i - 1][j - v[i]] != -1 。

综上,状态转移方程为: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]) ;


初始化、填表顺序、返回值:

        多加一行,方便初始化,第一行第一个格子为 0 ,因为正好能凑齐体积为 0 的背包,但是第一行第一个格子后面都是 -1 ,因为没有物品,无法满足体积大于 0 的情况。第一列全为0。

填表顺序从左往右,最后返回dp[n][V] ; 


解析代码

#include <iostream>
#include <cstring>using namespace std;const int N = 1010; // OJ定义成全局方便,且空间不会轻易溢出
int n, V, v[N], w[N];
int dp[N][N];int main()
{cin >> n >> V;for (int i = 1; i <= n; ++i) // 从1开始读数据{cin >> v[i] >> w[i];}for(int i = 1; i <= n; ++i){for(int j = 0; j <= V; ++j){dp[i][j] = dp[i - 1][j];if(j >= v[i])dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);}}cout << dp[n][V] << endl;memset(dp, 0, sizeof(dp));for(int j = 1; j <= V; ++j){dp[0][j] = -1;}for(int i = 1; i <= n; ++i){for(int j = 0; j <= V; ++j){dp[i][j] = dp[i - 1][j];if(j >= v[i] && dp[i - 1][j - v[i]] != -1)dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);}}cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}


滚动数组优化代码

背包问题基本上都是利用滚动数组来做空间上的优化:(时间也有常数的优化)

  1. 利用滚动数组优化。
  2. 直接在原始代码上修改。

        第i行元素只依赖于第i-1行元素。理论上,只需要保持两行元素,所以只需两个数组交替滚动,就能完成dp数组的填充。因此空间复杂度从O(N^2) 变为O(N)。

        这里还可以直接用一个数组来进行优化:从前往后去更新数组,dp[j - v[ i ]]肯定不比dp[ j ]的值大,而改了前面,后面的更新就会用到前面更新的数据,而本来应该使用原二维数组 i - 1行的数据,也就是更新数据之前的,因此可以巧妙地从后往前遍历,这样就可以避免用到更新后的数据。

在01背包问题中,优化的结果为:

  1. 删掉所有的横坐标。
  2. 修改一下 j 的遍历顺序。

(滚动数组优化代码只需能在原代码上修改就行,不用考虑什么状态表示)

#include <iostream>
#include <cstring>using namespace std;const int N = 1010; // OJ定义成全局方便,且空间不会轻易溢出
int n, V, v[N], w[N];
// int dp[N][N];
int dp[N]; // 滚动数组优化,把所有dp表左边一维坐标删掉,修改遍历顺序int main()
{cin >> n >> V;for (int i = 1; i <= n; ++i) // 从1开始读数据{cin >> v[i] >> w[i];}for(int i = 1; i <= n; ++i){for(int j = V; j >= v[i]; --j) // 滚动数组优化{dp[j] = dp[j];dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}cout << dp[V] << endl;memset(dp, 0, sizeof(dp));for(int j = 1; j <= V; ++j){dp[j] = -1;}for(int i = 1; i <= n; ++i){for(int j = V; j >= v[i]; --j) // 滚动数组优化{if(dp[j - v[i]] != -1)dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}cout << (dp[V] == -1 ? 0 : dp[V]) << endl;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/810990.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件杯 深度学习人体语义分割在弹幕防遮挡上的实现 - python

文章目录 1 前言1 课题背景2 技术原理和方法2.1基本原理2.2 技术选型和方法 3 实例分割4 实现效果5 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习人体语义分割在弹幕防遮挡上的应用 该项目较为新颖&#xff0c;适合作为竞…

二叉树学习

树 树是n个结点的有限集合&#xff0c;当n0时为空树&#xff0c;在任意一颗非空的树中&#xff0c;有且只有一个特定的称为根的结点&#xff0c;当n>1时&#xff0c;其余结点又可以分为m个不相交的有限集&#xff0c;其中每一个集合又是一棵树&#xff0c;并且称为根的子树…

解决MySQL错误:`ERROR 1049 (42000): Unknown database ‘nonexistentdb‘`

在管理MySQL数据库的过程中&#xff0c;我们可能会遇到各种各样的错误信息&#xff0c;这些错误信息有助于我们快速定位并解决问题。本文将深入探讨一个特定的错误——ERROR 1049 (42000): Unknown database nonexistentdb&#xff0c;这个错误会在尝试连接到MySQL服务器上不存…

【Java探索之旅】从输入输出到猜数字游戏

&#x1f3a5; 屿小夏 &#xff1a; 个人主页 &#x1f525;个人专栏 &#xff1a; Java编程秘籍 &#x1f304; 莫道桑榆晚&#xff0c;为霞尚满天&#xff01; 文章目录 &#x1f4d1;前言一、输入输出1.1 输出到控制台1.2 从键盘输入 二、猜数字游戏2.1 所需知识&#xff1a…

《猎灵online》游戏完整源码(源码+客户端+服务端+文档+工具),云盘下载

《猎灵》是一款由国内知名开发运营开发的大型3D魔幻网游&#xff0c;《猎灵》研发团队突破诸多瓶颈&#xff0c;首创“全自由无限制PK”&#xff0c;让玩家拒绝无意义等待&#xff0c;自由作战不受任何束缚&#xff0c;真正的实现想战就战&#xff0c;游戏创建了六界神魔乱斗的…

Amazon SageMaker:让机器学习变得更简单、更强大

授权说明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 亚马逊云科技开发者社区, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道。 前言&#xff1a; 在大数据时代的浪潮中&#xff0c;数据不再只是…

Anaconda的常用指令

一、conda基础命令 ① 查看conda帮助信息 conda --help # 或者&#xff1a; conda -h ② 查看conda版本 conda --version ③ 更新conda conda update conda ④ 降级conda版本 conda install -n base conda4.6.7 ⑤ 升级conda和anaconda conda update conda conda up…

Python神器!WEB自动化测试集成工具 DrissionPage

案例 跟踪商品价格&#xff0c;降价自动推送消息到微信 咱买不起还等不起吗&#xff1f; from DrissionPage import * import re from time import sleep import csv import os import datetime#写入时间p MixPage() p.get(http://xxxxxxx) #快快买网址 p.to_iframe(iframe…

云服务器centos提示 Cannot prepare internal mirrorlist: No URLs in mirrorlist的解决办法

yum update -y CentOS-8 - AppStream 118 B/s | 38 B 00:00 Error: Failed to download metadata for repo AppStream: Cannot prepare internal mirrorlist: No URLs in mirrorlist 执行下面的命令就可…

算法-快速幂

算法-快速幂 时间复杂度 O(logk) //求 m^k mod p int qmul(int m,int k,int p) {int res1%p;while(k){if(k&1){res*m;res%p;}m*m;m%p;k>>1;}return res; }

出海业务的网络安全挑战

出海业务的扩展带来了巨大的市场机遇&#xff0c;同时也带来了不少网络安全挑战&#xff1a; 数据泄露与隐私保护&#xff1a;跨境数据传输增加了数据被截获和泄露的风险。地理位置限制和审查&#xff1a;某些地区的网络审查和地理位置限制可能阻碍企业正常开展业务。网络攻击…

【svg】—— java解析svg的宽高属性

SVG&#xff08;Scalable Vector Graphics&#xff09;是一种基于XML的图像格式&#xff0c;用于描述二维矢量图形。用户在网页上展示高质量的矢量图形&#xff0c;svg图形可以无限放大或缩小而不会失真&#xff0c;保持清晰的边缘和线条。 java对于svg的处理其实比较麻烦&…

CSS特效---纯CSS实现点击切换按钮

1、演示 2、一切尽在代码中 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><meta name"viewport" content"w…

HashMap的常见问题

Entry中的hash属性为什么不直接使用key的hashCode()返回值呢&#xff1f; 不管是JDK1.7还是JDK1.8中&#xff0c;都不是直接用key的hashCode值直接与table.length-1计算求下标的&#xff0c;而是先对key的hashCode值进行了一个运算&#xff0c;JDK1.7和JDK1.8关于hash()的实现…

c++ 指针总结

概述 内存地址 在计算机内存中&#xff0c;每个存储单元都有一个唯一的地址(内存编号)。通俗理解&#xff0c;内存就是房间&#xff0c;地址就是门牌号 指针和指针变量 指针&#xff08;Pointer&#xff09;是一种特殊的变量类型&#xff0c;它用于存储内存地址。指针的实质…

机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例

机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例 随机森林回归 (Random Forest Regression): 任务类型: 随机森林回归主要用于回归任务。在回归任务中, 算法试图预测一个连续的数值输出, 而不是一个离散的类别。 输出: 随机森林回归的输出是一个连续的数值,…

算力租赁费用包括哪些

相比于企业自购设备、自建机房、自己运营&#xff0c;服务器租赁是绝大数企业的首先&#xff0c;租赁服务器从一定程度上解决了企业资金预算不足、AI芯片难买的局面。 随着文生视频大模型Sora、大语言模型Grok-1的相继出现&#xff0c;对高新能算力资源和服务的需求不断提高&a…

暴力枚举法

虽然暴力枚举法有时候效率低&#xff0c;时间复杂度高&#xff0c;但是在面对小规模数据集的时候&#xff0c;暴力枚举法往往是很好的思维利器。 B: 01 串的熵&#xff08;5分&#xff09; 问题描述 #include <iostream> #include <cmath> #include <algorithm…

什么是云HIS?云HIS的优点是什么?云HIS适用于什么医院?

什么是云HIS&#xff1f;云HIS的优点是什么&#xff1f;云HIS适用于什么医院&#xff1f; 一、什么是云HIS&#xff1f; 云HIS系统是一个运用云计算、大数据、物联网等新兴信息技术的业务和技术平台。它旨在按照现代医疗卫生管理要求&#xff0c;以数字化形式提供医疗卫生行业…

Mybatis generate xml 没有被覆盖

添加插件即可 <plugin type"org.mybatis.generator.plugins.UnmergeableXmlMappersPlugin"/>