Python图像处理——计算机视觉中常用的图像预处理

概述

在计算机视觉项目中,使用样本时经常会遇到图像样本不统一的问题,比如图像质量,并非所有的图像都具有相同的质量水平。在开始训练模型或运行算法之前,通常需要对图像进行预处理,以确保获得最佳的结果。图像预处理包括调整大小和裁剪到降噪和归一化的各种技术。涉及的库有OpenCV、Pillow和scikit-image等。

图像预处理

图像预处理是将原始图像数据操作成可用和有意义格式的过程。它允许消除不希望的失真并增强计算机视觉应用所需的特定品质。预处理是准备图像数据输入到机器学习模型之前的重要步骤。

常用的图像预处理:

  1. 调整大小: 将图像调整到统一的大小对机器学习算法的正常运行至关重要。可以使用OpenCV的resize()方法来调整图像大小。

  2. 灰度化: 将彩色图像转换为灰度可以简化图像数据,并减少一些算法的计算需求。cvtColor()方法可以用来将RGB转换为灰度。

  3. 降噪: 可以应用平滑、模糊和过滤技术来去除图像中不希望的噪声。常用的降噪方法包括GaussianBlur()和medianBlur()方法。

  4. 归一化: 将像素的强度值调整到期望的范围通常在0到1之间,这可以提高机器学习模型的性能。scikit-image的Normalize()可以用来进行此操作。

  5. 二值化: 通过阈值处理将灰度图像转换为黑白。OpenCV中的threshold()方法用于二值化图像。

  6. 对比度增强: 可以使用直方图均衡化调整图像的对比度。equalizeHist()方法增强了图像的对比度。

图像加载与转换

处理图像之前,首先是加载图像,然后是把图像转换到需要用的到数据空间,以便它们可以被库处理。这里常用到OpenCV和Pillow。

加载
使用OpenCV加载图像:

import cv2
image = cv2.imread('path/to/image.jpg')

这将把图像加载为NumPy数组。OpenCV加载的图像在BGR颜色空间中,如果需要,可能需要将其转换为RGB。

使用Pillow加载图像:

from PIL import Image
image = Image.open('path/to/image.jpg')

这将加载图像并将其存储为PIL图像对象。Pillow支持的图像格式更加丰富,包括PSD、ICO和WEBP等。

在颜色空间之间转换

如果需要在不同的颜色空间之间转换图像,可以使用OpenCV或Pillow提供的函数能直接转换。例如,将BGR转换为灰度图像:

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

在这里插入图片描述

或者将RGB转换为HSV:

image = image.convert('HSV')

在这里插入图片描述

图像尺寸

调整和裁剪图像尺寸是图像预处理的非常重要第一步。由于图像具有不同的形状和大小,但许多机器学习算法通常需要标准大小的输入。因此,经常需要将图像调整和裁剪到特定的尺寸,如256x256或512X512像素。在Python中,OpenCV或Pillow库提供了图像的调整大小和裁剪方法。

使用OpenCV时,可以使用resize()函数来调整图像的大小。例如:

import cv2
img = cv2.imread('original.jpg')
resized = cv2.resize(img, (512, 512))

这将把图像调整为512x512像素。

要裁剪图像为正方形,可以计算裁剪的中心位置,并使用OpenCV的crop()函数。
例如:

height, width = img.shape[:2]
size = min(height, width)
x = (width - size) // 2
y = (height - size) // 2
cropped = img[y:y+size, x:x+size]

使用Pillow时,可以使用Image.open()resize()函数。
例如:

from PIL import Image
img = Image.open('original.jpg')
resized = img.resize((224, 224))

要裁剪图像,可以使用img.crop()函数。
例如:

width, height = img.size
size = min(width, height)
left = (width - size) // 2
top = (height - size) // 2
right = (width + size) // 2
bottom = (height + size) // 2
cropped = img.crop((left, top, right, bottom))

将图像调整大小和裁剪到标准尺寸是非常重要的,这样可以确保机器学习模型能够高效地处理图像,并提高结果的准确性。因此,花时间来精心调整和裁剪图像将会得到更好的模型性能。

图像归一化

在处理图像数据时,将像素值归一化以保持一致的亮度并提高对比度是很重要的。这使得图像更适合分析,并允许机器学习模型独立于光照条件学习模式。

重新缩放像素值:
最常见的归一化技术是将像素值重新缩放到0到1的范围内。这是通过将所有像素除以最大像素值(通常对于RGB图像为255)来完成的。例如:

import cv2
Img = cv2.imread('image.jpg')
normalized = Img / 255.0

这将把所有像素缩放到0和1之间,0为黑色,1为白色。

直方图均衡化:
另一个有用的技术是直方图均衡化。这通过在整个范围内展开像素强度来改善对比度。可以使用OpenCV进行应用:

eq_img = cv2.equalizeHist(img)

这对于对比度低且像素值集中在狭窄范围内的图像效果很好。

对于某些算法,将像素值归一化到零均值和单位方差是有用的。这可以通过减去均值并缩放到单位方差来完成:

mean, std = cv2.meanStdDev(img)
std_img = (img - mean) / std

这将使图像围绕零居中,标准差为1。

还有一些更复杂的归一化技术,但这三个方法——重新缩放到0-1范围、直方图均衡化和标准化——涵盖了基础知识,并将为的图像数据准备好大多数机器学习应用。确保对你的训练和测试数据应用相同的归一化,以获得最佳结果。

图像滤波

图像滤波的作用是平滑图像、去除噪声、增强图像等。滤波操作可以通过应用各种类型的滤波器来实现,其中包括线性滤波器(如均值滤波、高斯滤波)和非线性滤波器(如中值滤波)等。

高斯模糊:
高斯模糊过滤器减少图像中的细节和噪声。它通过对每个像素及其周围像素应用高斯函数来“模糊”图像。这可以帮助平滑边缘和细节,为边缘检测或其他处理技术做准备。

中值模糊:
中值模糊过滤器适用于从图像中去除盐和胡椒噪声。它的工作原理是用邻近像素的中值替换每个像素。这可以帮助平滑孤立的噪声像素,同时保留边缘。

拉普拉斯滤波器:
拉普拉斯滤波器用于检测图像中的边缘。它通过检测强度变化迅速的区域来工作。输出将是一个突出显示边缘的图像,然后可以用于边缘检测。这有助于识别和提取图像中的特征。

锐化掩蔽:
锐化掩蔽是一种用于锐化细节和增强图像边缘的技术。它的工作原理是从原始图像中减去模糊版本的图像。这放大了边缘和细节,使图像看起来更清晰。锐化掩蔽可以在特征提取或对象检测之前用于锐化细节。

双边滤波器:
双边滤波器在保留边缘的同时平滑图像。它通过考虑像素的空间接近度和颜色相似性来实现这一点。空间上靠近且颜色相似的像素将一起平滑。空间上远离或颜色差异很大的像素不会被平滑。这导致了一个具有锋利边缘的平滑图像。双边滤波器在边缘检测之前的噪声减少中可能有用。

使用分割技术检测和移除背景

检测和移除图像的背景是许多计算机视觉任务中的重要预处理步骤。分割可以将前景主题与背景分离,得到只包含主题的清晰图像。

在Python中,使用OpenCV和scikit-image进行图像分割有几种常见方法:

  1. 阈值化(Thresholding):阈值化是将图像转换为二值图像的方法。通过选择一个阈值,像素值高于阈值的被标记为前景,低于阈值的被标记为背景。你可以使用OpenCV的cv2.threshold()函数应用阈值化。
import cv2# 读取图像
img = cv2.imread('image.jpg', 0)  # 以灰度模式读取图像# 应用阈值化
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)# 显示结果
cv2.imshow('Thresholded Image', thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
  1. 边缘检测(Edge Detection):边缘检测可以找到图像中的边缘,即对象之间的边界。Canny边缘检测是一种流行的算法,你可以使用OpenCV的cv2.Canny()函数来实现。
import cv2# 读取图像
img = cv2.imread('image.jpg', 0)  # 以灰度模式读取图像# Canny边缘检测
edges = cv2.Canny(img, 100, 200)# 显示结果
cv2.imshow('Canny Edge Detection', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
  1. 区域生长(Region Growing):区域生长是一种从种子点开始,逐步将相邻像素添加到区域中的方法。你可以使用scikit-image的skimage.segmentation.region_growing()函数来实现。
from skimage.segmentation import region_growing
import matplotlib.pyplot as plt# 读取图像
img = plt.imread('image.jpg')# 区域生长
seed = (100, 100)
region = region_growing(img, seed)# 显示结果
plt.imshow(region, cmap='gray')
plt.axis('off')
plt.show()
  1. 分水岭算法(Watershed Algorithm):分水岭算法将图像视为地形图,通过模拟水流的流动来分割图像。你可以使用scikit-image的skimage.segmentation.watershed()函数来实现。
from skimage.segmentation import watershed
from skimage.feature import peak_local_max
from scipy import ndimage
import numpy as np
import matplotlib.pyplot as plt# 读取图像
img = plt.imread('image.jpg')# 计算距离变换
distance = ndimage.distance_transform_edt(img)# 寻找峰值
local_maxi = peak_local_max(distance, indices=False, footprint=np.ones((3, 3)), labels=img)# 应用分水岭算法
markers = ndimage.label(local_maxi)[0]
labels = watershed(-distance, markers, mask=img)# 显示结果
plt.imshow(labels, cmap='nipy_spectral')
plt.axis('off')
plt.show()

通过分割,可以从图像中隔离出主题。分割是一个关键的第一步,它允许将计算机视觉模型集中在图像最重要的部分——前景主题上。

数据集增强

数据增强是一种通过生成新的图像来人为扩展数据集大小的技术,有助于减少过拟合并提高模型的泛化能力。常见的图像数据增强包括:

  1. 翻转和旋转:对图像进行水平或垂直翻转,以及90度、180度、270度的旋转,可以生成新的数据点。这样做可以使模型更好地适应不同的视角和方向。

  2. 裁剪:将图像裁剪到不同的大小和比例,可以创建具有不同视野的新图像。随机裁剪和特定比例的裁剪都是常见的方法。

  3. 颜色调整:调整图像的亮度、对比度、色调和饱和度可以创建具有不同外观的图像。但要小心,不要使图像过度扭曲,以免模型混淆。

  4. 图像叠加:在图像上叠加透明图像、纹理或噪声可以创建原始数据的变化。例如,添加水印、标志、污垢或高斯噪声等。

  5. 结合技术:结合多种增强技术可以进一步扩展数据集。例如,结合翻转、旋转、裁剪和颜色调整,可以生成更多样化的图像。

通过数据增强,可以扩展数据集的大小,而无需收集更多的原始图像。这有助于减少过拟合并提高模型的性能,同时也有助于节省训练时间和成本。但要注意不要过度增强,以免导致图像失真或模型混淆。

预处理步骤

对于图像项目项目,选择正确的预处理技术取决于数据的特点和项目的目标。常见的预处理步骤:

  1. 调整大小:将图像调整到统一的大小对机器学习算法至关重要。通常,图像会被调整为相同的高度和宽度,例如28x28或64x64像素。你可以使用OpenCV或Pillow库中的resize()方法来实现。

  2. 颜色转换:将图像转换为灰度或黑白可以简化分析并减少噪声。使用OpenCV中的cvtColor()方法将图像从RGB转换为灰度。对于黑白图像,可以使用阈值化来实现。

  3. 降噪:使用高斯模糊、中值模糊和双边过滤等技术可以减少噪声并平滑图像。OpenCV中的GaussianBlur()medianBlur()bilateralFilter()方法可以实现这些过滤器。

  4. 归一化:将像素值归一化到标准范围,例如0到1或-1到1,有助于算法更好地工作。你可以使用scikit-image中的normalize()方法来实现。

  5. 对比度增强:对于对比度较低的图像,可以使用直方图均衡化来提高对比度。OpenCV中的equalizeHist()方法可以执行此任务。

  6. 边缘检测:在图像中找到边缘或轮廓对于许多计算机视觉任务很有用。OpenCV中的Canny()方法中的Canny边缘检测器是一个常用的选择。

关键是根据项目的需求选择适当的预处理技术。从基本的调整大小开始,然后尝试不同的方法来改进图像质量,最终找到最适合你项目的预处理流程。通过实验,你将找到一个理想的预处理工作流程。

图像预处理常见问题

Python支持图像格式:

Python通过OpenCV和Pillow等库支持的一些主要格式包括:

  • JPEG:常见的有损图像格式
  • PNG:适用于具有透明度的图像的无损图像格式
  • TIFF:适用于高颜色深度图像的无损图像格式
  • BMP:未压缩的光栅图像格式

如何时调整图像大小:

当以下情况时,应该调整图像大小:

  • 图像太大,无法高效处理。减小大小可以加快处理速度。
  • 图像需要匹配机器学习模型的输入大小。
  • 图像需要在特定大小的屏幕或网页上显示。

常用的图像滤波:

一些流行的降噪技术包括:

  • 高斯模糊:使用高斯滤波器模糊图像并减少高频噪声。
  • 中值模糊:用邻近像素的中值替换每个像素。有效去除盐和胡椒噪声。
  • 双边滤波器:在保留边缘的同时模糊图像。它可以在保留锐利边缘的同时去除噪声。

OpenCV支持哪些颜色空间:

OpenCV支持RGB、HSV、LAB和灰度颜色空间。你可以使用cvtColor函数在颜色空间之间转换。例如:

# 将RGB转换为灰度
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)# 将RGB转换为HSV
hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)# 将RGB转换为LAB
lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)

转换到不同的颜色空间对于某些计算机视觉任务(如阈值化、边缘检测和对象跟踪)很有用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/777750.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

typescript 实现RabbitMQ死信队列和延迟队列 订单10分钟未付归还库存

Manjaro安装RabbitMQ 安装 sudo pacman -S rabbitmq rabbitmqadmin启动管理模块 sudo rabbitmq-plugins enable rabbitmq_managementsudo rabbitmq-server管理界面 http://127.0.0.1:15672/ 默认用户名和密码都是guest。 要使用 rabbitmqctl 命令添加用户并分配权限&#xf…

怎样去保证 Redis 缓存与数据库双写一致性?

解决方案 那么我们这里列出来所有策略,并且讨论他们优劣性。 先更新数据库,后更新缓存先更新数据库,后删除缓存先更新缓存,后更新数据库先删除缓存,后更新数据库 先更新数据库,后更新缓存 这种方法是不推…

在scroll-view中使用input,input键盘弹出时,滚动页面,输入框内容会出现错位问题?

解决办法 <view classpages><view><scroll-view scroll-y"{{sysScroll}}" scroll-top"{{scrollTop}}" class"scroll-hei-2 bg-def">...<input bindfocus"onfocus" bindblur"onblur" placeholder&quo…

RestTemplate 请求响应数据出现乱码问题,RestTemplate 如何解压缩 gzip 数据

文章目录 1.问题描述2.问题分析3.问题解决3.1 Apache HttpClient 依赖3.2 RestTemplate 配置类3.3 测试 1.问题描述 直接通过浏览器访问请求没有问题&#xff0c;但是通过 RestTemplate 访问请求却会出现乱码问题。 2.问题分析 首先我认为是 SpringBoot 版本、JDK 版本、项目结…

HTTP——Cookie

HTTP——Cookie 什么是Cookie通过Cookie访问网站 我们之前了解了HTTP协议&#xff0c;如果还有小伙伴还不清楚HTTP协议&#xff0c;可以点击这里&#xff1a; https://blog.csdn.net/qq_67693066/article/details/136895597 我们今天来稍微了解一下HTTP里面一个很小的部分&…

OpenHarmony中的LLDB高性能调试器

概述 LLDB&#xff08;Low Lever Debugger&#xff09;是新一代高性能调试器。详细说明参考 LLDB官方文档 。 当前OpenHarmony中的LLDB工具是在 llvm15.0.4 基础上适配演进出来的工具&#xff0c;是HUAWEI DevEco Studio工具中默认的调试器&#xff0c;支持调试C和C应用。 工…

【直播课】2024年PostgreSQL CM认证实战培训课程于4月27日开课!

课程介绍 了解关注开源技术&#xff0c;学习PG以点带面 Linux/Andriod&#xff08;操作系统&#xff09;、Apache/Tomcat&#xff08;应用服务器&#xff09;、OpenStack/KVM&#xff08;虚拟化&#xff09;、Docker/K8S&#xff08;容器化&#xff09;、Hadoop&#xff08;大…

IoTeX(IOTX) 推出首个DEPIN数据平台,蓝筹项目合作进入新时代。

首先来了解一下什么是IoTeX(IOTX) 2024年1月25日&#xff0c;作为由IoTeX驱动的首个DEPIN类别优先数据平台&#xff0c;与蓝筹DePIN项目Helium、Akash、Theta、DIMO、Pocket、Drife、WiFi Map和Streamr合作推出。这一官方发布标志着DePIN&#xff08;去中心化物理基础设施网络&…

西门子 S7-200 SMART 系列十三:实例详解用s7-200 smart 向导配置PID回路参数设定

原文链接&#xff1a;西门子 S7-200 SMART 系列十三&#xff1a;实例详解用s7-200 smart 向导配置PID回路&参数设定 在往期文章中介绍了s7-200 smart的通讯应用&#xff0c;Modbus RTU&#xff0c;S7通信&#xff0c;Profinet通信&#xff0c;TCP通信等&#xff0c;基本包含…

代码学习记录29----贪心最后一天

随想录日记part29 t i m e &#xff1a; time&#xff1a; time&#xff1a; 2024.03.28 主要内容&#xff1a;今天是学习贪心算法最后一天&#xff0c;接下来是针对题目的讲解&#xff1a;1.单调递增的数字;2.监控二叉树; 3. 总结 738.单调递增的数字 968.监控二叉树 总结 To…

通知中心架构:打造高效沟通平台,提升信息传递效率

随着信息技术的快速发展&#xff0c;通知中心架构作为一种关键的沟通工具&#xff0c;正逐渐成为各类应用和系统中必不可少的组成部分。本文将深入探讨通知中心架构的意义、设计原则以及在实际场景中的应用。 ### 什么是通知中心架构&#xff1f; 通知中心架构是指通过集中管…

Git_常用命令+代码冲突解决方案

文章目录 基本命令的使用查看git的当前版本初始化配置设置用户名及邮箱设置仓库的认证方式查看当前配置 创建仓库从远程服务器克隆仓库创建本地仓库 添加和提交文件工作区域和文件状态工作区域文件状态 查看文件状态及分支信息查看暂存区的内容添加文件提交文件查看提交日志回退…

verilog设计-cdc:多比特信号跨时钟域(DMUX)

一、前言 多比特一般为数据&#xff0c;其在跨时钟域传输的过程中有多种处理方式&#xff0c;比如DMUX&#xff0c;异步FIFO&#xff0c;双口RAM&#xff0c;握手处理。本文介绍通过DMUX的方式传输多比特信号。 二、DMUX同步跨时钟域数据 dmux表示数据分配器&#xff0c;该方…

ChatGLM3:AttributeError_ can‘t set attribute ‘eos_token‘

最近在微调 ChatGLM3-6b 时&#xff0c;训练好模型之后&#xff0c;调用inference_hf.py函数验证模型的时候报了如下错误&#xff0c;下面是解决方案。 我在训练时使用的是ptuning_v2.yaml配置文件&#xff0c;训练运行代码如下&#xff1a; CUDA_VISIBLE_DEVICES1 python fi…

3.Labview字符串与路径精讲(下) — 字符串及路径的使用

本章讲解labview中的字符串和路径具体实践用例&#xff0c;从前面板字符串属性到后面板字符串函数应用做出详细概述&#xff0c;通过本文的学习希望大家了解到字符串及路径在labview编程中的重要地位。 本系列文章为labview 从基础到强化到精通的学习文章&#xff0c;大家可以随…

Unity3d使用Jenkins自动化打包(Windows)(二)

文章目录 前言一、Unity工程准备二、Unity调取命令行实战一实战二实战三实战四实战五 总结 前言 自动化打包的价值在于让程序员更轻松地创建和管理构建工具链&#xff0c;提高编程效率&#xff0c;将繁杂的工作碎片化&#xff0c;变成人人&#xff08;游戏行业特指策划&#x…

RegSeg 学习笔记(待完善)

论文阅读 解决的问题 引用别的论文的内容 可以用 controlf 寻找想要的内容 PPM 空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC / SPPELAN &#xfffc; ASPP STDC&#xff1a;short-term dense concatenate module 和 DDRNet SE-ResNeXt …

如何为企业策划一场XR虚拟直播?

活动年年办&#xff0c;都是老一套&#xff0c;想玩点新花样&#xff1f; 预算有限&#xff0c;但还是想把活动办的逼格高一点&#xff1f; 想通过活动&#xff0c;让更多的人知道自己企业的品牌&#xff1f; 随着AIGC技术的不断演变&#xff0c;企业活动的形式和内容也在不…

Linux中的vim/vi编辑器

VI 是 Unix 操作系统和类 Unix 操作系统中最通用的文本编辑器。 VIM 编辑器是从 VI 发展出来的一个性能更强大的文本编辑器&#xff0c;可以说是&#xff1a;编辑器之神。可以主动的以字体颜 色辨别语法的正确性&#xff0c;方便程序设计。VIM 与 VI 编辑器完全兼容。 一:三种…

MoonBit MeetUp回顾——张正、宗喆:编程语言在云原生与区块链领域的技术探索

宗喆和张正分别给我们带了 KCL 相关的最新进展&#xff0c;由蚂蚁集团开发的 Rust 编写的开源 DSL&#xff0c;目标是优化云原生策略配置和用户体验。它通过引入动态配置管理、配置校验和基础设施抽象等核心概念&#xff0c;解决开发者认知负担、配置膨胀和标准化工具缺乏的问题…