imgaug库指南(六):从入门到精通的【图像增强】之旅

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(一):从入门到精通的【图像增强】之旅介绍了imgaug库的主要功能、安装方式、提供一个简单的数据增强示例(针对一副图像)
imgaug库指南(二):从入门到精通的【图像增强】之旅介绍了如何利用imgaug库对批量图像进行数据增强并可视化
imgaug库指南(三):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 高斯模糊
imgaug库指南(四):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值模糊
imgaug库指南(五):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 中值模糊/滤波,并介绍了如何利用【中值滤波】过滤椒盐噪声

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— 双边模糊/滤波


双边模糊/滤波(BilateralBlur)

功能介绍

iaa.BilateralBlurimgaug库中的一个方法,用于对图像进行双边模糊。双边模糊是一种特殊的模糊技术,它在模糊图像的同时考虑了像素的空间信息和灰度值信息。这意味着双边模糊可以更好地保护图像的边缘和细节,同时去除噪声。

语法

import imgaug.augmenters as iaa
aug = iaa.BilateralBlur(d=(3, 10), sigma_color=(10, 250), sigma_space=(10, 250))
  • d: 滤波过程中每个像素邻域的直径;

    • d为整数,则每个像素邻域的直径为d;
    • d为包含两个整数的元组 (a, b),直径将从 [a…b] 区间中随机采样;
  • sigma_space: 控制模糊程度的空间标准差。较大的值会导致更强的模糊效果。

    • sigma_space为整数,则空间标准差为sigma_space
    • sigma_space为包含两个整数的元组 (a, b),空间标准差将从 [a…b] 区间中随机采样;
  • sigma_color: 控制模糊程度的颜色标准差。较大的值会导致更强的模糊效果。

    • sigma_color为整数,则空间标准差为sigma_color
    • sigma_color为包含两个整数的元组 (a, b),空间标准差将从 [a…b] 区间中随机采样;

示例代码

  1. 使用不同标准差参数
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建双边模糊增强器
aug1 = iaa.BilateralBlur(d=7, sigma_color=50, sigma_space=50)
aug2 = iaa.BilateralBlur(d=7, sigma_color=150, sigma_space=150)
aug3 = iaa.BilateralBlur(d=7, sigma_color=200, sigma_space=200)# 对图像进行双边模糊处理
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和模糊后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Blurred Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Blurred Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Blurred Image3")
plt.show()

运行结果如下:

图1 原图及中值模糊/滤波结果可视化

注意事项:

  1. 性能考虑:双边模糊是一种相对较耗时的操作。因此,在处理大图像或视频时,需要考虑到计算资源的需求。
  2. 结果的可重复性:由于双边模糊是非线性操作,每次应用可能会产生稍微不同的结果。如果你需要结果的可重复性,可以使用aug.to_deterministic()方法将增强器转换为确定性状态。

总结

iaa.BilateralBlurimgaug库中的一个非常有用的数据增强方法。它是一种非线性的滤波方法,结合了图像的空间邻近度和像素值相似度,旨在达到保边去噪的目的。双边滤波器的好处是可以做边缘保存,它能够有效地将影像上的噪声去除,同时保存影像上的边缘信息。具体来说,双边滤波器在平滑图像的同时,能更好地保留图像中的边缘信息,对于高频细节的保护效果也优于传统的滤波器。然而,双边滤波器对于彩色图像里的高频噪声的处理效果并不理想,可能会保留过多的高频信息。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/602839.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

web期末作业动态时钟UI界面毛玻璃版

效果图 html代码奉上 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthde…

Android Canvas图层saveLayer剪切clipRect原图对应Rect区域,Kotlin(1)

Android Canvas图层saveLayer剪切clipRect原图对应Rect区域&#xff0c;Kotlin&#xff08;1&#xff09; 上面一个ImageView&#xff0c;下面一个ImageView&#xff0c;两个ImageView同等大小。当手指在上面的ImageView滑动时候&#xff0c;在下面ImageView里面显示对应区域“…

真核微生物基因组质量评估工具EukCC的安装和详细使用方法

介绍&#xff1a; GitHub - EBI-Metagenomics/EukCC: Tool to estimate genome quality of microbial eukaryotes 安装&#xff1a; docker&#xff1a; docker pull microbiomeinformatics/eukcc 推荐conda 环境&#xff1a; conda install -c conda-forge -c bioconda …

OpenHarmony应用构建工具Hvigor的构建流程

前言 OpenHarmony 应用和服务使用 Hvigor 作为工程的构建工具。本篇文章将介绍 Hvigor 的构建流程&#xff0c;通过修改脚本配置使 Hvigor 执行自定义任务。 Hvigor 的构建流程 加载命令行参数和环境变量&#xff1b;初始化项目结构&#xff0c;创建 Project 和 Module 实例…

Guava Cache 异步刷新技巧

前言 Guava Cache是一款非常优秀的本地缓存框架&#xff0c;提供简洁易用的 API 供开发者使用。 这篇文章&#xff0c;我们聊聊如何使用 Guava Cache 异步刷新技巧带飞系统性能 。 1 基本用法 首先&#xff0c;在 Java 应用中添加 maven 依赖&#xff1a; <dependency&g…

我发现了一个还行的生成图片的网站(新人登录可领30金币)

这个网站是一个生成图片的在线工具&#xff0c;它提供了多种功能和选项&#xff0c;让用户可以轻松地创建各种风格和类型的图片。它的界面简洁易用&#xff0c;新用户登录后还可以获得30个金币的奖励。这些金币可以用来解锁更多的高级功能和特效。用户可以选择不同的背景、字体…

彻底认识Unity ui设计中Space - Overlay、Screen Space - Camera和World Space三种模式

文章目录 简述Screen Space - Overlay优点缺点 Screen Space - Camera优点缺点 World Space优点缺点 简述 用Unity中开发了很久&#xff0c;但是对unity UI管理中Canvas组件的Render Mode有三种主要类型&#xff1a;Screen Space - Overlay、Screen Space - Camera和World Spa…

mysql-数据库DDL操作

之前已经学习了安装mysql服务端还有进行了一些关于数据库安全的设置&#xff0c;现在开始学习创建数据库和数据表以及进行修改。 MySQL的DDL&#xff08;Data Definition Language&#xff09;语句用于定义或更改数据库结构&#xff0c;包括创建、修改或删除表、视图、索引等数…

详细平稳解

1.详细平衡 定义&#xff1a;一个在高斯白噪声激励下的动力学系统在状态空间中如果用如下运动方程描述&#xff1a; d d t X j \frac{d}{dt}\mathbf{X}_{j} dtd​Xj​ f j ( X ) f_{j}(\mathbf{X}) fj​(X) ∑ l 1 m g j l ( X ) W l ( t ) \sum_{l1}^{m}g_{jl}(\mathbf{X})W…

Open CASCADE学习|入门Hello world

目录 1、新建项目 2、写代码 3、配置 3.1配置头文件 3.2配置静态库文件 3.3配置动态库文件 4、编译运行 1、新建项目 新建一个Win32控制台应用程序&#xff0c;取名为HelloWorld&#xff0c;如下图所示&#xff1a; 2、写代码 测试所用的代码如下&#xff1a; // Use T…

Redis:原理速成+项目实战——Redis实战6(封装缓存工具(高级写法)缓存总结)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位大四、研0学生&#xff0c;正在努力准备大四暑假的实习 &#x1f30c;上期文章&#xff1a;Redis&#xff1a;原理速成项目实战——Redis实战5&#xff08;互斥锁、逻辑过期解决缓存击穿问题&#xff09; &#x1f4da;订…

C# Entity Framework 中不同的数据的加载方式

延迟加载 延迟加载是指在访问导航属性时&#xff0c;Entity Framework 会自动查询数据库并加载相关数据。这种方式在我们需要访问导航属性时比较方便&#xff0c;因为我们无需手动加载相关数据&#xff0c;而且只会在需要时才会进行查询&#xff0c;从而减少了不必要的开销。但…

Python基础-07(for循环、range()函数)

文章目录 前言一、for循环1.for循环结构2.参数 end&#xff08;使其输出时变为横向&#xff09; 二、range()函数1.range(常数)2.range(起始值&#xff0c;结束值)3.range(起始值&#xff0c;结束值&#xff0c;步长)4.例子 总结 前言 此章介绍循环结构中最常用的循环&#xf…

Redisson与SQL乐观锁:实现接口幂等性的终极指南与实战演示

Redisson与SQL乐观锁&#xff1a;实现接口幂等性的终极指南与实战演示 Redisson与SQL乐观锁&#xff1a;实现接口幂等性的终极指南与实战演示 接口幂等性.md

497 蓝桥杯 成绩分析 简单

497 蓝桥杯 成绩分析 简单 //C风格解法1&#xff0c;*max_element&#xff08;&#xff09;与*min_element&#xff08;&#xff09;求最值 //时间复杂度O(n)&#xff0c;通过率100% #include <bits/stdc.h> using namespace std;using ll long long; const int N 1e4 …

java基于VUE3+SSM框架的在线宠物商城+vue论文

摘 要 信息数据从传统到当代&#xff0c;是一直在变革当中&#xff0c;突如其来的互联网让传统的信息管理看到了革命性的曙光&#xff0c;因为传统信息管理从时效性&#xff0c;还是安全性&#xff0c;还是可操作性等各个方面来讲&#xff0c;遇到了互联网时代才发现能补上自古…

【langchain】在单个文档知识源的上下文中使用langchain对GPT4All运行查询

In the previous post, Running GPT4All On a Mac Using Python langchain in a Jupyter Notebook, 我发布了一个简单的演练&#xff0c;让GPT4All使用langchain在2015年年中的16GB Macbook Pro上本地运行。在这篇文章中&#xff0c;我将提供一个简单的食谱&#xff0c;展示我们…

【Docker基础三】Docker安装Redis

下载镜像 根据自己需要下载指定版本镜像&#xff0c;所有版本看这&#xff1a;Index of /releases/ (redis.io) 或 https://hub.docker.com/_/redis # 下载指定版本redis镜像 docker pull redis:7.2.0 # 查看镜像是否下载成功 docker images 创建挂载目录 # 宿主机上创建挂…

element-ui table height 属性导致界面卡死

问题: 项目上&#xff0c;有个点击按钮弹出抽屉的交互, 此时界面卡死 原因分析: 一些场景下(父组件使用动态单位/弹窗、抽屉中使用), element-ui 的 table 会循环计算高度值, 导致界面卡死 github 上的一些 issues 和解决方案: Issues ElemeFE/element GitHub 官方讲是升…

bootstrap教程

bootstrap教程 大家好&#xff0c;我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天&#xff0c;让我们一同进入前端开发的世界&#xff0c;探索一款备受欢迎的前端框架——Bootstra…