import   numpy as  np
x =  np. array( [ [ 1 , 1 , 1 , 1 ] , [ 1 , 2 , 3 , 1 ] , [ 2 , 2 , 4 , 1 ] , [ 2 , 3 , 5 , 1 ] ] ) 
y =  np. dot( x, np. array( [ 2 , 4 , 6 , 0.5 ] ) ) 
x_x_1 =  np. linalg. inv( np. dot( x. T, x) ) 
x_1_y =  np. dot( x. T, y) w =  np. dot( x_x_1, x_1_y) 
print ( w) 
[ 2 , 4 , 6 , 0.5 ] 
import  numpy as  np
from  sklearn. linear_model import  LinearRegressionx =  np. array( [ [ 1 , 1 ] , [ 1 , 2 ] , [ 2 , 2 ] , [ 2 , 3 ] ] ) 
y =  np. dot( x, np. array( [ 1 , 2 ] ) )  +  3 reg =  LinearRegression( ) . fit( x, y) 
reg. score( x, y) 
1.0 reg. coef_
array( [ 1. ,  2. ] ) reg. intercept_
3.000000000000001 reg. predict( np. array( [ [ 3 , 5 ] ] ) ) 
array( [ 16. ] ) 
from  sklearn. datasets import  load_iris
from  sklearn. linear_model import  LogisticRegressionX, y =  load_iris( return_X_y= True ) clf =  LogisticRegression( random_state= 0 ) . fit( X, y) 
clf. predict( X[ : 2 , : ] ) 
array( [ 0 ,  0 ] ) clf. predict_proba( X[ : 2 , : ] ) 
array( [ [ 9.81788430e-01 ,  1.82115558e-02 ,  1.43322263e-08 ] , [ 9.71702577e-01 ,  2.82973926e-02 ,  2.99842724e-08 ] ] ) clf. score( X, y) 
0.9733333333333334