Linux高性能服务器设计

C10K和C10M

计算机领域的很多技术都是需求推动的,上世纪90年代,由于互联网的飞速发展,网络服务器无法支撑快速增长的用户规模。1999年,Dan Kegel提出了著名的C10问题:一台服务器上同时处理10000个客户网络连接。10000个网络连接并不会发送请求到服务器,有些连接并不活跃,同一时刻,只有极少的部分连接发送请求。不同的服务类型,每个连接发送请求的频率也不相同,游戏服务器的连接会频繁的发送请求,而Web服务器的连接发送请求的频率就低很多。无论如何,根据经验法则,对于特定的服务类型,连接越多,同一时刻发送请求的连接也越多。

时至今日,C10K问题当然早已解决,不仅如此,一台机器能支撑的连接越来越多,后来提出了C10M问题,在一台机器上支撑1000万的连接,2015年,MigratoryData在单机承载12M的连接,解决了C10M问题。

本文先回顾C10问题的解决方案,再探讨如何构建支撑C10M的应用程序,聊聊其中涉及的各种技术。

C10K问题的解决

时间退回到1999年,当时要实现一个网络服务器,大概有这样几种模式

简单进程/线程模型

这是一种非常简单的模式,服务器启动后监听端口,阻塞在accept上,当新网络连接建立后,accept返回新连接,服务器启动一个新的进程/线程专门负责这个连接。从性能和伸缩性来说,这种模式是非常糟糕的,原因在于

  • 进程/线程创建和销毁的时间,操作系统创建一个进程/线程显然需要时间,在一个繁忙的服务器上,如果每秒都有大量的连接建立和断开,采用每个进程/线程处理一个客户连接的模式,每个新连接都要创建创建一个进程/线程,当连接断开时,销毁对应的线程/进程。创建和销毁进程/线程的操作消耗了大量的CPU资源。使用进程池和线程池可以缓解这个问题。
  • 内存占用。主要包含两方面,一个是内核数据结构所占用的内存空间,另外一个是Stack所占用的内存。有些应用的调用栈很深,比如Java应用,经常能看到几十上百层的调用栈。
  • 上下文切换的开销。上下文切换时,操作系统的调度器中断当前线程,选择另外一个可运行的线程在CPU上继续运行。调度器需要保存当前线程的现场信息,然后选择一个可运行的线程,再将新线程的状态恢复到寄存器中。保存和恢复现场所需要的时间和CPU型号有关,选择一个可运行的线程则完全是软件操作,Linux 2.6才开始使用常量时间的调度算法。 以上是上下文切换的直接开销。除此之外还有一些间接开销,上下文切换导致相关的缓存失效,比如L1/L2 Cache,TLB等,这些也会影响程序的性能,但是间接开销很难衡量。

有意思的是,这种模式虽然性能极差,但却依然是我们今天最常见到的模式,很多Web程序都是这样的方式在运行。

select/poll

另外一种方式是使用select/poll,在一个线程内处理多个客户连接。select和poll能够监控多个socket文件描述符,当某个文件描述符就绪,select/soll从阻塞状态返回,通知应用程序可以处理用户连接了。使用这种方式,我们只需要一个线程就可以处理大量的连接,避免了多进程/线程的开销。之所以把select和poll放在一起说,原因在于两者非常相似,性能上基本没有区别,唯一的区别在于poll突破了select 1024个文件描述符的限制,然而当文件描述符数量增加时,poll性能急剧下降,因此所谓突破1024个文件描述符实际上毫无意义。select/poll并不完美,依然存在很多问题:

  1. 每次调用select/poll,都要把文件描述符的集合从用户地址空间复制到内核地址空间
  2. select/poll返回后,调用方必须遍历所有的文件描述符,逐一判断文件描述符是否可读/可写。

这两个限制让select/poll完全失去了伸缩性。连接数越多,文件描述符就越多,文件描述符越多,每次调用select/poll所带来的用户空间到内核空间的复制开销越大。最严重的是当报文达到,select/poll返回之后,必须遍历所有的文件描述符。假设现在有1万个连接,其中只一个连接发送了请求,但是select/poll就要把1万个连接全部检查一遍。

epoll

FreeBSD 4.1引入了kqueue,此时是2000年7月,而在Linux上,还要等待2年后的2002年才开始引入kqueue的类似实现: epoll。epoll最初于 2.5.44进入Linux kernel mainline,此时已经是2002年,距离C10K问题提出已经过了3年。

epoll是如何提供一个高性能可伸缩的IO多路复用机制呢?首先,epoll引入了epoll instance这个概念,epoll instance在内核中关联了一组要监听的文件描述符配置:interest list,这样的好处在于,每次要增加一个要监听的文件描述符,不需要把所有的文件描述符都配置一次,然后从用户地址空间复制到内核地址空间,只需要把单个文件描述符复制到内核地址空间,复制开销从O(n)降到了O(1)。

注册完文件描述符后,调用epoll_wait开始等待文件描述符事件。epoll_wait可以只返回已经ready的文件描述符,因此,在epoll_wait返回之后,程序只需要处理真正需要处理的文件描述符,而不用把所有的文件描述符全部遍历一遍。假设在全部N个文件描述符中,只有一个文件描述符Ready,select/poll要执行N次循环,epoll只需要一次。

epoll出现之后,Linux上才真正有了一个可伸缩的IO多路复用机制。基于epoll,能够支撑的网络连接数取决于硬件资源的配置,而不再受限于内核的实现机制。CPU越强,内存越大,能支撑的连接数越多。

编程模型

Reactor和proactor

不同的操作系统上提供了不同的IO多路复用实现,Linux上有epoll,FreeBSD有kqueue,Windows有IOCP。对于需要跨平台的程序,必然需要一个抽象层,提供一个统一的IO多路复用接口,屏蔽各个系统接口的差异性。

Reactor是实现这个目标的一次尝试,最早出现在Douglas C. Schmidt的论文"The Reactor An Object-Oriented Wrapper for Event-Driven Port Monitoring and Service Demultiplexing"中。从论文的名字可以看出,Reactor是poll这种编程模式的一个面向对象包装。考虑到论文的时间,当时正是面向对象概念正火热的时候,什么东西都要蹭蹭面向对象的热度。论文中,DC Schmidt描述了为什么要做这样的一个Wrapper,给出了下面几个原因

  1. 操作系统提供的接口太复杂,容易出错。select和poll都是通用接口,因为通用,增加了学习和正确使用的复杂度。
  2. 接口抽象层次太低,涉及太多底层的细节。
  3. 不能跨平台移植。
  4. 难以扩展。

实际上除了第三条跨平台,其他几个理由实在难以站得住脚。select/poll这类接口复杂吗,使用起来容易出错吗,写出来的程序难以扩展吗?不过不这么说怎么体现Reactor的价值呢。正如论文名称所说的,Reactor本质是对操作系统IO多路复用机制的一个面向对象包装,为了证明Reactor的价值,DC Schmidt还用C++面向对象的特性实现了一个编程框架:ACE,实际上使用ACE比直接使用poll或者epoll复杂多了。

后来DC Schmidt写了一本书《面向模式的软件架构》,再次提到了Reactor,并重新命名为Reactor Pattern,现在网络上能找到的Reactor资料,基本上都是基于Reactor Pattern,而不是早期的面向Object-Orientend Wrapper。

《面向模式的软件》架构中还提到了另外一种叫做Proactor的模式,和Reactor非常类似,Reactor针对同步IO,Proactor则针对异步IO。

Callback,Future和纤程

Reactor看上去并不复杂,但是想编写一个完整的应用程序时候就会发现其实没那么简单。为了避免Reactor主逻辑阻塞,所有可能会导致阻塞的操作必须注册到epoll上,带来的问题就是处理逻辑的支离破碎,大量使用callback,产生的代码复杂难懂。如果应用程序中还有非网络IO的阻塞操作,问题更严重,比如在程序中读写文件。Linux中文件系统操作都是阻塞的,虽然也有Linux AIO,但是一直不够成熟,难堪大用。很多软件采用线程池来解决这个问题,不能通过epoll解决的阻塞操作,扔到一个线程池执行。这又产生了多线程内存开销和上下文切换的问题。

Future机制是对Callback的简单优化,本质上还是Callback,但是提供了一致的接口,代码相对来说简单一些,不过在实际使用中还是比较复杂的。Seastar是一个非常彻底的future风格的框架,从它的代码可以看到这种编程风格真的非常复杂,阻塞式编程中一个函数几行代码就能搞定的事情,在Seastar里需要上百行代码,几十个labmda (在Seastar里叫做continuation)。

纤程是一种用户态调度的线程,比如Go语言中的goroutine,有些人可能会把这种机制成为coroutine,不过我认为coroutine和纤程还是有很大区别的,coroutine是泛化的子进程,具有多个进入和退出点,用来一些一些相互协作的程序,典型的例子就是Python中的generator。纤程则是一种运行和调度机制。

纤程真正做到了高性能和易用,在Go语言中,使用goroutine实现的高性能服务器是一件轻松愉快的事情,完全不用考虑线程数、epoll、回调之类的复杂操作,和编写阻塞式程序完全一样。

网络优化

Kernel bypass

网络子系统是Linux内核中一个非常庞大的组件,提供了各种通用的网络能力。通用通常意味在在某些场景下并不是最佳选择。实际上业界的共识是Linux内核网络不支持超大并发的网络能力。根据我过去的经验,Linux最大只能处理1MPPS,而现在的10Gbps网卡通常可以处理10MPPS。随着更高性能的25Gbps,40Gbps网卡出现,Linux内核网络能力越发捉襟见肘。

为什么Linux不能充分发挥网卡的处理能力?原因在于:

  • 大多数网卡收发使用中断方式,每次中断处理时间大约100us,另外要考虑cache miss带来的开销。部分网卡使用NAPI,轮询+中断结合的方式处理报文,当报文放进队列之后,依然要触发软中断。
  • 数据从内核地址空间复制到用户地址空间。
  • 收发包都有系统调用。
  • 网卡到应用进程的链路太长,包含了很多不必要的操作。

Linux高性能网络一个方向就是绕过内核的网络栈(kernel bypass),业界有不少尝试

  • PF_RING 高效的数据包捕获技术,比libpcap性能更好。需要自己安装内核模块,启用ZC Driver,设置transparent_mode=2的情况下,报文直接投递到客户端程序,绕过内核网络栈。
  • Snabbswitch 一个Lua写的网络框架。完全接管网卡,使用UIO(Userspace IO)技术在用户态实现了网卡驱动。
  • Intel DPDK,直接在用户态处理报文。非常成熟,性能强大,限制是只能用在Intel的网卡上。根据DPDK的数据,3GHz的CPU Core上,平均每个报文的处理时间只要60ns(一次内存的访问时间)。
  • Netmap 一个高性能收发原始数据包的框架,包含了内核模块以及用户态库函数,需要网卡驱动程序配合,因此目前只支持特定的几种网卡类型,用户也可以自己修改网卡驱动。
  • XDP,使用Linux eBPF机制,将报文处理逻辑下放到网卡驱动程序中。一般用于报文过滤、转发的场景。

kernel bypass技术最大的问题在于不支持POSIX接口,用户没办法不修改代码直接移植到一种kernel bypass技术上。对于大多数程序来说,还要要运行在标准的内核网络栈上,通过调整内核参数提升网络性能。

网卡多队列

报文到达网卡之后,在一个CPU上触发中断,CPU执行网卡驱动程序从网卡硬件缓冲区读取报文内容,解析后放到CPU接收队列上。这里所有的操作都在一个特定的CPU上完成,高性能场景下,单个CPU处理不了所有的报文。对于支持多队列的网卡,报文可以分散到多个队列上,每个队列对应一个CPU处理,解决了单个CPU处理瓶颈。

为了充分发挥多队列网卡的价值,我们还得做一些额外的设置:把每个队列的中断号绑定到特定CPU上。这样做的目的,一方面确保网卡中断的负载能分配到不同的CPU上,另外一方面可以将负责网卡中断的CPU和负责应用程序的CPU区分开,避免相互干扰。

在Linux中,/sys/class/net/${interface}/device/msi_irqs下保存了每个队列的中断号,有了中断号之后,我们就可以设置中断和CPU的对应关系了。网上有很多文章可以参考。

网卡Offloading

回忆下TCP数据的发送过程:应用程序将数据写到套接字缓冲区,内核将缓冲区数据切分成不大于MSS的片段,附加上TCP Header和IP Header,计算Checksum,然后将数据推到网卡发送队列。这个过程中需要CPU全程参与, 随着网卡的速度越来越快,CPU逐渐成为瓶颈,CPU处理数据的速度已经赶不上网卡发送数据的速度。经验法则,发送或者接收1bit/s TCP数据,需要1Hz的CPU,1Gbps需要1GHz的CPU,10Gbps需要10GHz的CPU,已经远超单核CPU的能力,即使能完全使用多核,假设单个CPU Core是2.5GHz,依然需要4个CPU Core。

为了优化性能,现代网卡都在硬件层面集成了TCP分段、添加IP Header、计算Checksum等功能,这些操作不再需要CPU参与。这个功能叫做tcp segment offloading,简称tso。使用ethtool -k 可以检查网卡是否开启了tso

除了tso,还有其他几种offloading,比如支持udp分片的ufo,不依赖驱动的gso,优化接收链路的lro

充分利用多核

随着摩尔定律失效,CPU已经从追求高主频转向追求更多的核数,现在的服务器大都是96核甚至更高。构建一个支撑C10M的应用程序,必须充分利用所有的CPU,最重要的是程序要具备水平伸缩的能力:随着CPU数量的增多程序能够支撑更多的连接。

很多人都有一个误解,认为程序里使用了多线程就能利用多核,考虑下CPython程序,你可以创建多个线程,但是由于GIL的存在,程序最多只能使用单个CPU。实际上多线程和并行本身就是不同的概念,多线程表示程序内部多个任务并发执行,每个线程内的任务可以完全不一样,线程数和CPU核数没有直接关系,单核机器上可以跑几百个线程。并行则是为了充分利用计算资源,将一个大的任务拆解成小规模的任务,分配到每个CPU上运行。并行可以 通过多线程实现,系统上有几个CPU就启动几个线程,每个线程完成一部分任务。

并行编程的难点在于如何正确处理共享资源。并发访问共享资源,最简单的方式就加锁,然而使用锁又带来性能问题,获取锁和释放锁本身有性能开销,锁保护的临界区代码不能只能顺序执行,就像CPython的GIL,没能充分利用CPU。

Thread Local和Per-CPU变量

这两种方式的思路是一样的,都是创建变量的多个副本,使用变量时只访问本地副本,因此不需要任何同步。现代编程语言基本上都支持Thread Local,使用起来也很简单,C/C++里也可以使用__thread标记声明ThreadLocal变量。

Per-CPU则依赖操作系统,当我们提到Per-CPU的时候,通常是指Linux的Per-CPU机制。Linux内核代码中大量使用Per-CPU变量,但应用代码中并不常见,如果应用程序中工作线程数等于CPU数量,且每个线程Pin到一个CPU上,此时才可以使用。

原子变量

如果共享资源是int之类的简单类型,访问模式也比较简单,此时可以使用原子变量。相比使用锁,原子变量性能更好。在竞争不激烈的情况下,原子变量的操作性能基本上和加锁的性能一致,但是在并发比较激烈的时候,等待锁的线程要进入等待队列等待重新调度,这里的挂起和重新调度过程需要上下文切换,浪费了更多的时间。

大部分编程语言都提供了基本变量对应的原子类型,一般提供set, get, compareAndSet等操作。

lock-free

lock-free这个概念来自

An algorithm is called non‐blocking if failure or suspension of any thread cannot cause failure or suspension of another thread; an algorithm is called lock‐free if, at each step, some thread can make progress.

non-blocking算法任何线程失败或者挂起,不会导致其他线程失败或者挂起,lock-free则进一步保证线程间无依赖。这个表述比较抽象,具体来说,non-blocking要求不存在互斥,存在互斥的情况下,线程必须先获取锁再进入临界区,如果当前持有锁的线程被挂起,等待锁的线程必然需要一直等待下去。对于活锁或者饥饿的场景,线程失败或者挂起的时候,其他线程完全不仅能正常运行,说不定还解决了活锁和饥饿的问题,因此活锁和饥饿符合non-blocking,但是不符合lock-free。

实现一个lock-free数据结构并不容易,好在已经有了几种常见数据结构的的lock-free实现:buffer, list, stack, queue, map, deque,我们直接拿来使用就行了。

优化对锁的使用

有时候没有条件使用lock-free,还是得用锁,对于这种情况,还是有一些优化手段的。首先使用尽量减少临界区的大小,使用细粒度的锁,锁粒度越细,并行执行的效果越好。其次选择适合的锁,比如考虑选择读写锁。

CPU affinity

使用CPU affinity机制合理规划线程和CPU的绑定关系。前面提到使用CPU affinity机制,将多队列网卡的中断处理分散到多个CPU上。不仅是中断处理,线程也可以绑定,绑定之后,线程只会运行在绑定的CPU上。为什么要将线程绑定到CPU上呢?绑定CPU有这样几个好处

  • 为线程保留CPU,确保线程有足够的资源运行
  • 提高CPU cache的命中率,某些对cache敏感的线程必须绑定到CPU上才行。
  • 更精细的资源控制。可以预先需要静态划分各个工作线程的资源,例如为每个请求处理线程分配一个CPU,其他后台线程共享一个CPU,工作线程和中断处理程序工作在不同的CPU上。
  • NUMA架构中,每个CPU有自己的内存控制器和内存插槽,CPU访问本地内存别访问远程内存快3倍左右。使用affinity将线程绑定在CPU上,相关的数据也分配到CPU对应的本地内存上。

Linux上设置CPU affinity很简单,可以使用命令行工具taskset,也可以在程序内直接调用API sched_getaffinitysched_setaffinity

其他优化技术

使用Hugepage

Linux中,程序内使用的内存地址是虚拟地址,并不是内存的物理地址。为了简化虚拟地址到物理地址的映射,虚拟地址到物理地址的映射最小单位是“Page”,默认情况下,每个页大小为4KB。CPU指令中出现的虚拟地址,为了读取内存中的数据,指令执行前要把虚拟地址转换成内存物理地址。Linux为每个进程维护了一张虚拟地址到物理地址的映射表,CPU先查表找到虚拟地址对应的物理地址,再执行指令。由于映射表维护在内存中,CPU查表就要访问内存。相对CPU的速度来说,内存其实是相当慢的,一般来说,CPU L1 Cache的访问速度在1ns左右,而一次内存访问需要60-100ns,比CPU执行一条指令要慢得多。如果每个指令都要访问内存,比如严重拖慢CPU速度,为了解决这个问题,CPU引入了TLB(translation lookaside buffer),一个高性能缓存,缓存映射表中一部分条目。转换地址时,先从TLB查找,没找到再读内存。

显然,最理想的情况是映射表能够完全缓存到TLB中,地址转换完全不需要访问内存。为了减少映射表大小,我们可以使用“HugePages”:大于4KB的内存页。默认HugePages是2MB,最大可以到1GB。

避免动态分配内存

内存分配是个复杂且耗时的操作,涉及空闲内存管理、分配策略的权衡(分配效率,碎片),尤其是在并发环境中,还要保证内存分配的线程安全。如果内存分配成为了应用瓶颈,可以尝试一些优化策略。比如内存复用i:不要重复分配内存,而是复用已经分配过的内存,在C++/Java里则考虑复用已有对象,这个技巧在Java里尤其重要,不仅能降低对象创建的开销,还避免了大量创建对象导致的GC开销。另外一个技巧是预先分配内存,实际上相当于在应用内实现了一套简单的内存管理,比如Memcached的Slab。

Zero Copy

对于一个Web服务器来说,响应一个静态文件请求需要先将文件从磁盘读取到内存中,再发送到客户端。如果自信分析这个过程,会发现数据首先从磁盘读取到内核的页缓冲区,再从页缓冲区复制到Web服务器缓冲区,接着从Web服务器缓冲区发送到TCP发送缓冲区,最后经网卡发送出去。这个过程中,数据先从内核复制到进程内,再从进程内回到内核,这两次复制完全是多余的。Zero Copy就是类似情况的优化方案,数据直接在内核中完成处理,不需要额外的复制。

Linux中提供了几种ZeroCopy相关的技术,包括sendfile,splice,copy_file_range,Web服务器中经常使用sendfile优化性能。

最后

千万牢记:不要过早优化。

优化之前,先考虑两个问题:

  1. 现在的性能是否已经满足需求了
  2. 如果真的要优化,是不是已经定位了瓶颈

在回答清楚这两个问题之前,不要盲目动手。


原文链接
本文为云栖社区原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/517630.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

月入过万的副业你要不要?不需要编程知识,不限男女,不限学历

01你知道做什么兼职最赚钱吗?你想拥有一份月薪过万的兼职工作吗?今天,我给你推荐的是看起来高大上,实则难度系数并不高的脚本创作!你知道兼职脚本有多赚钱吗?普通程序员每天拿出2小时的时间,每个…

高德在提升定位精度方面的探索和实践

2019杭州云栖大会上,高德地图技术团队向与会者分享了包括视觉与机器智能、路线规划、场景化/精细化定位时空数据应用、亿级流量架构演进等多个出行技术领域的热门话题。现场火爆,听众反响强烈。我们把其中的优秀演讲内容整理成文并陆续发布出来&#xff…

Nginx 反向代理

文章目录一、软件安装验证1. Linux安装nginx2. Tomcat10 下载和配置 Linux 环境3. 服务器部署二、软件安装验证2.1. 启动tomcat2.2. nginx配置2.3. 关键配置2.4. 启动nginx2.5. 测试验证一、软件安装验证 1. Linux安装nginx https://blog.csdn.net/weixin_40816738/article/d…

收益 or 挑战?Serverless 究竟给前端带来了什么

导读:前端开发者是最早享受到 “Serverless” 好处的群体,因为浏览器就是一个开箱即用、甚至无需为计算付费的环境!Serverless 把前端开发体验带入了后端,利用 FaaS 与 BaaS 打造一套开箱即用的后端开发环境。本文作者将从前端角度…

阿里云数据库四位小伙伴聚齐!共同开启生态合作新篇章!

随着用户的不断扩大,阿里云数据库能够帮助用户节省大量的基础运维工作,但是基于数据库业务侧的诊断、调优、护航等工作也是必不可少的。为了满足更多的市场需求,阿里云数据库团队发起数据库合作计划,招募具备优秀专业服务能力的伙…

一行代码引来的安全漏洞,就让我们丢失了整个服务器的控制权

来源 | 程序员石头责编| Carol封图 | CSDN 付费下载自视觉中国之前在某厂的某次项目开发中,项目组同学设计和实现了一个“引以为傲”,额,有点夸张,不过自认为还说得过去的 feature,结果临上线前被啪啪打脸,…

金融行业怎么用AI?蚂蚁金服是这么做的

伴随着金融科技的不断创新,人工智能技术已成为金融行业的重要驱动力。 在9月27日于杭州云栖小镇召开的云栖大会“金融智能”专场上,蚂蚁金服集团副总裁、AI首席科学家、达摩院金融智能负责人漆远博士做了开场演讲,向与会嘉宾分享了金融智能方…

SpringBoot 集成 MyBatisPlus 模板

<dependencies><!--对象、字符串等元素判断--><dependency><groupId>org.apache.commons</groupId><artifactId>commons-lang3</artifactId><version>3.9</version></dependency><!--json处理--><depend…

贾扬清:把生命浪费在有意思的事情上

今天&#xff0c;是1024程序员节。在这个“攻城狮”自带光芒的日子里&#xff0c;阿里妹请来AI大神贾扬清&#xff0c;作为一位开发者&#xff0c;聊一聊他自己的开发者经历&#xff0c;希望对你有所启发。 贾扬清 阿里巴巴集团副总裁、高级研究员 阿里巴巴计算平台事业部总裁 …

MongoDB 入门,我是花了心思的

作者 | 沉默王二责编 | Carol封图 | CSDN 付费下载自视觉中国有时候不得不感慨一下&#xff0c;系统升级真的是好处多多&#xff0c;不仅让我有机会重构了之前的烂代码&#xff0c;也满足了我积极好学的虚荣心。你看&#xff0c;Redis 入门了、Elasticsearch 入门了&#xff0c…

码农节快乐|一个系统,高效解决复杂事件采集-计算-实时触达

PartI&#xff1a; 1024 今天是1024&#xff0c;一个特别的数字&#xff0c;比如某网站内容的解压密码通常都是1024&#xff0c;想求一个种子留言也是1024。1024是属于广大程序猿&#xff08;又称码农&#xff09;的节日&#xff0c;在这样一个节日里&#xff0c;各种“黑”程…

SpringBoot集成Myabtis

二、SpringBoot集成Myabtis 2.1. pom 依赖 <!--版本控制-><properties><java.version>1.8</java.version><oracle.version>11.2.0.3</oracle.version><mysql.version>8.0.20</mysql.version></properties><!--Mybat…

DevOps 在移动应用程序开发中扮演什么角色?

作者 | VARUN BHAGAT译者 | 火火酱&#xff0c;责编| Carol封图 | CSDN 付费下载自视觉中国全球智能手机用户数量已经超过30亿。据估计&#xff0c;未来几年用户人数将增加至数亿人。智能手机用户和应用程序下载量的这种稳定增长证明了移动应用程序行业的蓬勃发展。如今在这个技…

她说:行!嫁人就选程序员!

本文的重点是&#xff1a;“为什么年轻漂亮的小姑娘都瞄准了程序员小哥哥”“理发38&#xff1f;太奢侈了&#xff01;淘宝20买套剪刀自己可以用好几年。”“衣服太贵了&#xff0c;我觉得优衣库的那件打折就已经很好了”“上个月的一千块钱的零花钱没花完&#xff0c;这个月先…

html初始化调用js函数

<script type"text/javascript" src"js/jquery-3.6.0.min.js"></script> <script type"text/javascript">$(function () {fn();});function fn() {alert("开始调用函数"); //待调用的函数} </script>

JS获取url参数

function getQueryVariable(variable) {var query window.location.search.substring(1);var vars query.split("&");for (var i0;i<vars.length;i) {var pair vars[i].split("");if(pair[0] variable){return pair[1];}}return(false); }使用实…

数学之美:嵌入式编程凹凸性之妙用(附C代码)

来源 | 嵌入式客栈今天遇到一个网友问一个问题&#xff0c;他有一个传感器测量一个物理量&#xff0c;需要判断其变化趋势&#xff0c;我给了一些建议&#xff0c;这里将这个建议展开做些深入分析&#xff0c;并分享给大家。本文想借此表达一下个人的一个观点&#xff0c;做开发…

Guns 企业版多数据源配置集成dynamic-datasource

文章目录一、改造多数据源1. 依赖引入2. 启动类添加注解3. 配置多数据源二、案例实战2.1. controller2.2. service2.3. impl2.4. mapper2.5. xml三、分页失效解决方案一、改造多数据源 1. 依赖引入 目前改用dynamic-datasource方式多数据源处理&#xff0c;配置如下图&#x…

记一次go的数组下标是否越界问题

记一次go的数组下标是否越界问题a : make([]int, 100) b : a[:len(a)] //不会越界&#xff0c;因为左闭右开&#xff0c;不会去执行a[len(a)]切片操作

从地摊看云计算:规模产业历程大揭秘

作者 | 马超责编 | 夕颜头图 | CSDN下载自视觉中国出品 | CSDN&#xff08;ID:CSDNnews&#xff09; 地摊经济的突然兴起&#xff0c;可能是2020年发生在中国最神奇的一幕了&#xff1a;刚刚还在直播间内直播的带货的企业老板&#xff0c;转眼间又来到地摊来叫卖产品了。当然也…