(pytorch-深度学习系列)简单实现kaggle房价预测-学习笔记

实现kaggle房价预测

导入所需模块:

%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import pandas as pdprint(torch.__version__)
torch.set_default_tensor_type(torch.FloatTensor)

读取数据集:
(具体以自己存放的数据集的位置为准)

train_data = pd.read_csv('./data/train.csv')
test_data = pd.read_csv('./data/test.csv')

数据集的基本情况:

train_data.shape # 输出 (1460, 81),训练数据集包括1460个样本、80个特征和1个标签。
test_data.shape # 输出 (1459, 80),测试数据集包括1459个样本、80个特征#查看前5个样本的前4个特征、后2个特征和标签(SalePrice):
train_data.iloc[0:5, [0, 1, 2, 3, -3, -2, -1]]

第一个特征是Id,对于机器学习来说,id不能带来有效的特征信息,所以我们不使用这个属性作为特征。

# 将所有的训练数据和测试数据的79个特征按样本连结
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

对数据进行预处理:

numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std())) #标准化处理,对所有的特征减去均值,再除以标准差
# 标准化后,每个数值特征的均值变为0,所以可以直接用0来替换缺失值
all_features[numeric_features] = all_features[numeric_features].fillna(0)# dummy_na=True将缺失值也当作合法的特征值并为其创建指示特征
这一步操作相当于进行one_hot编码
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape # (2919, 331),这一步转换将特征数从79增加到了331#将numpy数据转化为tensor,便于后面的训练
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float)
train_labels = torch.tensor(train_data.SalePrice.values, dtype=torch.float).view(-1, 1)

标准化后,每个数值特征的均值变为0,所以可以直接用0来替换缺失值
使用one_hot编码将离散的特征分解成多个特征,分解之后的特征可以用0/1来表示,这样,这个转换将特征数从79增加到了331

定义模型所需的函数:

loss = torch.nn.MSELoss()def get_net(feature_num):net = nn.Linear(feature_num, 1)for param in net.parameters():nn.init.normal_(param, mean=0, std=0.01)return net#对数均方差损失的实现
def log_rmse(net, features, labels):with torch.no_grad():# 将小于1的值设成1,使得取对数时数值更稳定clipped_preds = torch.max(net(features), torch.tensor(1.0))rmse = torch.sqrt(loss(clipped_preds.log(), labels.log()))return rmse.item()

给定预测值y^1,…,y^n\hat y_1, \ldots, \hat y_ny^1,,y^n和对应的真实标签y1,…,yny_1,\ldots, y_ny1,,yn,对数均方根误差的定义为

1n∑i=1n(log⁡(yi)−log⁡(y^i))2.\sqrt{\frac{1}{n}\sum_{i=1}^n\left(\log(y_i)-\log(\hat y_i)\right)^2}.n1i=1n(log(yi)log(y^i))2.

实现K折交叉验证:

def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None,legend=None, figsize=(3.5, 2.5)):set_figsize(figsize)plt.xlabel(x_label)plt.ylabel(y_label)plt.semilogy(x_vals, y_vals)if x2_vals and y2_vals:plt.semilogy(x2_vals, y2_vals, linestyle=':')plt.legend(legend)def get_k_fold_data(k, i, X, y):# 返回第i折交叉验证时所需要的训练和验证数据assert k > 1fold_size = X.shape[0] // kX_train, y_train = None, Nonefor j in range(k):idx = slice(j * fold_size, (j + 1) * fold_size)X_part, y_part = X[idx, :], y[idx]if j == i:X_valid, y_valid = X_part, y_partelif X_train is None:X_train, y_train = X_part, y_partelse:X_train = torch.cat((X_train, X_part), dim=0)y_train = torch.cat((y_train, y_part), dim=0)return X_train, y_train, X_valid, y_validdef k_fold(k, X_train, y_train, num_epochs,learning_rate, weight_decay, batch_size):train_l_sum, valid_l_sum = 0, 0for i in range(k):data = get_k_fold_data(k, i, X_train, y_train)net = get_net(X_train.shape[1])train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,weight_decay, batch_size)train_l_sum += train_ls[-1]valid_l_sum += valid_ls[-1]if i == 0:semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',range(1, num_epochs + 1), valid_ls,['train', 'valid'])print('fold %d, train rmse %f, valid rmse %f' % (i, train_ls[-1], valid_ls[-1]))return train_l_sum / k, valid_l_sum / k



训练模型:

def train(net, train_features, train_labels, test_features, test_labels,num_epochs, learning_rate, weight_decay, batch_size):train_ls, test_ls = [], []dataset = torch.utils.data.TensorDataset(train_features, train_labels)train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)# 这里使用了Adam优化算法optimizer = torch.optim.Adam(params=net.parameters(), lr=learning_rate, weight_decay=weight_decay) net = net.float()for epoch in range(num_epochs):for X, y in train_iter:l = loss(net(X.float()), y.float())optimizer.zero_grad()l.backward()optimizer.step()train_ls.append(log_rmse(net, train_features, train_labels))if test_labels is not None:test_ls.append(log_rmse(net, test_features, test_labels))return train_ls, test_lsk, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print('%d-fold validation: avg train rmse %f, avg valid rmse %f' % (k, train_l, valid_l))def train_and_pred(train_features, test_features, train_labels, test_data,num_epochs, lr, weight_decay, batch_size):net = get_net(train_features.shape[1])train_ls, _ = train(net, train_features, train_labels, None, None,num_epochs, lr, weight_decay, batch_size)semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')print('train rmse %f' % train_ls[-1])preds = net(test_features).detach().numpy()test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)submission.to_csv('./submission.csv', index=False)train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)

上述代码执行完之后会生成一个submission.csv文件,该文件符合kaggle的提交格式,可以直接将结果再kaggle比赛链接进行提交。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/507993.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(pytorch-深度学习系列)ResNet残差网络的理解-学习笔记

ResNet残差网络的理解 ResNet伴随文章 Deep Residual Learning for Image Recognition 诞生,该文章是MSRA何凯明团队在2015年ImageNet上使用的网络,在当年的classification、detection等比赛中,ResNet均获了第一名,这也导致了Res…

(pytorch-深度学习系列)pytorch构造深度学习模型-学习笔记

pytorch构造深度学习模型 1. 通过继承module类的方式来构造模型 Module类是nn模块里提供的一个模型构造类,是所有神经网络模块的基类。 可以继承基类并重构 __init()__函数和forward()forward()forward()函数的方式来构造模型。 以下是一个构造一个模型的例子&am…

(pytorch-深度学习系列)模型参数的初始化与访问操作-学习笔记

模型参数的初始化与访问操作 学习 如何初始化以及访问模型参数,以及如何在多层之间共享模型参数 首先定义一个含有单个隐藏层的多层感知机,使用默认方式初始化该模型的参数,并且进行一次前向计算: import torch from torch impo…

(pytorch-深度学习系列)pytorch实现自定义网络层,并自设定前向传播路径-学习笔记

pytorch实现自定义网络层,并自设定前向传播路径-学习笔记 1. 不包含模型参数的自定义网络层 首先我们自定义一个网络层, 定义一个网络层,使其不包含模型参数,并在forward()函数中进行运算: import torch from torc…

(pytorch-深度学习系列)读取和存储数据-学习笔记

读取和存储数据 我们可以使用pt文件存储Tensor数据: import torch from torch import nnx torch.ones(3) torch.save(x, x.pt)这样我们就将数据存储在名为x.pt的文件中了 我们可以从文件中将该数据读入内存: x2 torch.load(x.pt) print(x2)还可以存…

(pytorch-深度学习系列)pytorch使用GPU计算-学习笔记

pytorch使用GPU计算 在之前的blog中早已经讲过如何配置pytorch的GPU加速环境 查看GPU加速是否可用: import torch from torch import nnprint(torch.cuda.is_available()) # true 查看GPU是否可用print(torch.cuda.device_count()) #GPU数量, 1torch.…

(pytorch-深度学习系列)CNN二维卷积层-学习笔记

二维卷积层 在二维互相关运算中,卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按元素相乘并求和,得到输出数组中相应…

(pytorch-深度学习系列)卷积神经网络中的填充(padding)和步幅(stride)

卷积神经网络中的填充(padding)和步幅(stride) 之前写过一篇blog,描述CNN网络层的输入和输入尺寸的计算关系,但是并没有描述的很全面,这里全面描述了影响输出尺寸的两个超参数padding和stride,查阅了相关资料,编码理解…

(pytorch-深度学习系列)CNN的多输入通道和多输出通道

CNN的多输入通道和多输出通道 之前的输入都视为二维数组,但是真实数据往往具有更高的维度,彩色图像有RGB三个颜色通道,那么这个图像(高为h,宽为w)可以表示为3∗h∗w3*h*w3∗h∗w的多维数组,一般…

(pytorch-深度学习系列)CNN中的池化层-学习笔记

CNN中的池化层 首先,池化(pooling)层的提出是为了缓解卷积层对位置的过度敏感性。 什么意思? 比如在图像边缘检测问题中,实际图像里,我们的目标物体不会总出现在固定位置,即使我们连续拍摄同…

(pytorch-深度学习系列)卷积神经网络LeNet-学习笔记

卷积神经网络LeNet 先上图:LeNet的网络结构 卷积(6个5∗5的核)→降采样(池化)(2∗2的核,步长2)→卷积(16个5∗5的核)→降采样(池化)(2∗2的核,步长2)→全连接16∗5∗5→120→全连接120→84→全连接84→10\begin{matrix}卷积 \\ (6个5*5的核…

(pytorch-深度学习系列)深度卷积神经网络AlexNet

深度卷积神经网络AlexNet 文字过多,但是重点已经标出来了 背景 在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机。虽然LeNet可以在早期的小数据集上取得好的成绩,但是在更大的真实数据集上的表现并…

(pytorch-深度学习系列)使用重复元素的网络(VGG)

使用重复元素的网络(VGG) VGG的名字来源于论文作者所在的实验室Visual Geometry Group,VGG提出了可以通过重复使用简单的基础块来构建深度模型的思路。 VGG Block(VGG 块) VGG块的组成规律是:连续使用数个相同的填充为1、窗口形…

(pytorch-深度学习系列)网络中的网络(NiN)

网络中的网络(NiN) LeNet、AlexNet和VGG在设计上的共同之处是:先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。其中,AlexNet和VGG对LeNet的改进主要在于如何对这两个模块加宽&…

(pytorch-深度学习)包含并行连结的网络(GoogLeNet)

包含并行连结的网络(GoogLeNet) 在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet的网络结构大放异彩。它虽然在名字上向LeNet致敬,但在网络结构上已经很难看到LeNet的影子。GoogLeNet吸收了NiN中网络串联网络的思想&#…

(pytorch-深度学习)批量归一化

批量归一化 批量归一化(batch normalization)层能让较深的神经网络的训练变得更加容易 通常来说,数据标准化预处理对于浅层模型就足够有效了。随着模型训练的进行,当每层中参数更新时,靠近输出层的输出较难出现剧烈变…

(pytorch-深度学习)实现残差网络(ResNet)

实现残差网络(ResNet) 我们一般认为,增加神经网络模型的层数,充分训练后的模型理论上能更有效地降低训练误差。理论上,原模型解的空间只是新模型解的空间的子空间。也就是说,如果我们能将新添加的层训练成恒等映射f(x)xf(x) xf(…

(pytorch-深度学习)实现稠密连接网络(DenseNet)

稠密连接网络(DenseNet) ResNet中的跨层连接设计引申出了数个后续工作。稠密连接网络(DenseNet)与ResNet的主要区别在于在跨层连接上的主要区别: ResNet使用相加DenseNet使用连结 ResNet(左)…

(pytorch-深度学习)语言模型-学习笔记

语言模型 自然语言处理中最常见的数据是文本数据。我们可以把一段自然语言文本看作一段离散的时间序列。 假设一段长度为TTT的文本中的词依次为w1,w2,…,wTw_1, w_2, \ldots, w_Tw1​,w2​,…,wT​,那么在离散的时间序列中: wtw_twt​(1≤t…

(pytorch-深度学习)循环神经网络

循环神经网络 在nnn元语法中,时间步ttt的词wtw_twt​基于前面所有词的条件概率只考虑了最近时间步的n−1n-1n−1个词。如果要考虑比t−(n−1)t-(n-1)t−(n−1)更早时间步的词对wtw_twt​的可能影响,需要增大nnn。 这样模型参数的数量将随之呈指数级增长…