(pytorch-深度学习系列)pytorch构造深度学习模型-学习笔记

pytorch构造深度学习模型

1. 通过继承module类的方式来构造模型

Module类是nn模块里提供的一个模型构造类,是所有神经网络模块的基类。
可以继承基类并重构 __init()__函数和forward()forward()forward()函数的方式来构造模型。

以下是一个构造一个模型的例子:

import torch
from torch import nnclass MLP(nn.Module):# 声明带有模型参数的层,这里声明了两个全连接层def __init__(self, **kwargs):# 调用MLP父类Module的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数super(MLP, self).__init__(**kwargs)self.hidden = nn.Linear(784, 256) # 隐藏层self.act = nn.ReLU()self.output = nn.Linear(256, 10)  # 输出层# 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出def forward(self, x):a = self.act(self.hidden(x))return self.output(a)

实例化刚刚构建的MLP类得到模型变量net,net(X)会调用MLP继承自Module类的__call__函数,这个函数将调用MLP类定义的forward函数来完成前向计算。

X = torch.rand(2, 784)
net = MLP()
print(net)
net(X)

2. 通过Sequential类定义简单的模型

如果定义的模型的前向计算就是简单的串联各层的计算时,可以通过Sequential类快速定义模型。它可以接收一个子模块的有序字典(OrderedDict)或者一系列子模块作为参数来逐一添加Module的实例,而模型的前向计算就是将这些实例按添加的顺序逐一计算。

定义一个与Sequential类有相同功能的类:ep_sequential来解读Sequential类的工作机制:

class ep_sequential(nn.Module):from collections import OrderedDictdef __init__(self, *args):super(ep_sequential, self).__init__()if len(args) == 1 and isinstance(args[0], OrderedDict): # 如果传入的是一个OrderedDictfor key, module in args[0].items():self.add_module(key, module)  # add_module方法会将module添加进self._modules(一个OrderedDict)else:  # 传入的是一些Modulefor idx, module in enumerate(args):self.add_module(str(idx), module)def forward(self, input):# self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历成员for module in self._modules.values():input = module(input)return input

这里通过forward函数就可以看出Sequential类实现的是简单的串联各层

net = ep_equential(nn.Linear(128, 256),nn.ReLU(),nn.Linear(256, 10), )
print(net)
net(X)

3. 使用ModuleList类

ModuleList接收一个子模块的列表作为输入,可以像List那样进行append和extend操作:

net = nn.ModuleList([nn.Linear(128, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1])  # 类似List的索引访问
print(net)
# net(torch.zeros(1, 128)) # 会报NotImplementedError

ModuleList仅仅是一个储存各种模块的列表,这些模块之间没有联系也没有顺序(所以不用保证相邻层的输入输出维度匹配),而且没有实现forward功能需要自己实现,所以上面执行net(torch.zeros(1, 128))会报NotImplementedError;而Sequential内的模块需要按照顺序排列,要保证相邻层的输入输出大小相匹配,内部forward功能已经实现。

这是官网的例子:

class MyModule(nn.Module):def __init__(self):super(MyModule, self).__init__()self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])def forward(self, x):# ModuleList can act as an iterable, or be indexed using intsfor i, l in enumerate(self.linears):x = self.linears[i // 2](x) + l(x)return x

但是,ModuleList并不是一般的list,加入到ModuleList里的所有模块的参数会被自动添加到网络中。
下面的例子进行了对比:

class Module_ModuleList(nn.Module):def __init__(self):super(Module_ModuleList, self).__init__()self.linears = nn.ModuleList([nn.Linear(10, 10)])class Module_List(nn.Module):def __init__(self):super(Module_List, self).__init__()self.linears = [nn.Linear(10, 10)]net1 = Module_ModuleList()
net2 = Module_List()print("net1:")
for p in net1.parameters():print(p.size())print("net2:")
for p in net2.parameters():print(p)

输出:

net1:
torch.Size([10, 10])
torch.Size([10])
net2:

从结果可以看出,使用ModuleList 初始化网络层,那么该层参数就会被自动加入调用ModuleList的网络的模型中。

4. 使用ModuleDict类

ModuleDict接收一个子模块的字典作为输入, 类似ModuleList,可以像字典那样进行添加访问操作:

net = nn.ModuleDict({'linear': nn.Linear(128, 256),'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
# net(torch.zeros(1, 128)) # 会报NotImplementedError

和ModuleList一样,ModuleDict实例仅仅是存放了一些模块的字典,并没有定义forward函数。同样,ModuleDict也与Python的普通的Dict不同,ModuleDict里的所有模块的参数会被自动添加到整个网络中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/507991.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(pytorch-深度学习系列)模型参数的初始化与访问操作-学习笔记

模型参数的初始化与访问操作 学习 如何初始化以及访问模型参数,以及如何在多层之间共享模型参数 首先定义一个含有单个隐藏层的多层感知机,使用默认方式初始化该模型的参数,并且进行一次前向计算: import torch from torch impo…

(pytorch-深度学习系列)pytorch实现自定义网络层,并自设定前向传播路径-学习笔记

pytorch实现自定义网络层,并自设定前向传播路径-学习笔记 1. 不包含模型参数的自定义网络层 首先我们自定义一个网络层, 定义一个网络层,使其不包含模型参数,并在forward()函数中进行运算: import torch from torc…

(pytorch-深度学习系列)读取和存储数据-学习笔记

读取和存储数据 我们可以使用pt文件存储Tensor数据: import torch from torch import nnx torch.ones(3) torch.save(x, x.pt)这样我们就将数据存储在名为x.pt的文件中了 我们可以从文件中将该数据读入内存: x2 torch.load(x.pt) print(x2)还可以存…

(pytorch-深度学习系列)pytorch使用GPU计算-学习笔记

pytorch使用GPU计算 在之前的blog中早已经讲过如何配置pytorch的GPU加速环境 查看GPU加速是否可用: import torch from torch import nnprint(torch.cuda.is_available()) # true 查看GPU是否可用print(torch.cuda.device_count()) #GPU数量, 1torch.…

(pytorch-深度学习系列)CNN二维卷积层-学习笔记

二维卷积层 在二维互相关运算中,卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按元素相乘并求和,得到输出数组中相应…

(pytorch-深度学习系列)卷积神经网络中的填充(padding)和步幅(stride)

卷积神经网络中的填充(padding)和步幅(stride) 之前写过一篇blog,描述CNN网络层的输入和输入尺寸的计算关系,但是并没有描述的很全面,这里全面描述了影响输出尺寸的两个超参数padding和stride,查阅了相关资料,编码理解…

(pytorch-深度学习系列)CNN的多输入通道和多输出通道

CNN的多输入通道和多输出通道 之前的输入都视为二维数组,但是真实数据往往具有更高的维度,彩色图像有RGB三个颜色通道,那么这个图像(高为h,宽为w)可以表示为3∗h∗w3*h*w3∗h∗w的多维数组,一般…

(pytorch-深度学习系列)CNN中的池化层-学习笔记

CNN中的池化层 首先,池化(pooling)层的提出是为了缓解卷积层对位置的过度敏感性。 什么意思? 比如在图像边缘检测问题中,实际图像里,我们的目标物体不会总出现在固定位置,即使我们连续拍摄同…

(pytorch-深度学习系列)卷积神经网络LeNet-学习笔记

卷积神经网络LeNet 先上图:LeNet的网络结构 卷积(6个5∗5的核)→降采样(池化)(2∗2的核,步长2)→卷积(16个5∗5的核)→降采样(池化)(2∗2的核,步长2)→全连接16∗5∗5→120→全连接120→84→全连接84→10\begin{matrix}卷积 \\ (6个5*5的核…

(pytorch-深度学习系列)深度卷积神经网络AlexNet

深度卷积神经网络AlexNet 文字过多,但是重点已经标出来了 背景 在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机。虽然LeNet可以在早期的小数据集上取得好的成绩,但是在更大的真实数据集上的表现并…

(pytorch-深度学习系列)使用重复元素的网络(VGG)

使用重复元素的网络(VGG) VGG的名字来源于论文作者所在的实验室Visual Geometry Group,VGG提出了可以通过重复使用简单的基础块来构建深度模型的思路。 VGG Block(VGG 块) VGG块的组成规律是:连续使用数个相同的填充为1、窗口形…

(pytorch-深度学习系列)网络中的网络(NiN)

网络中的网络(NiN) LeNet、AlexNet和VGG在设计上的共同之处是:先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。其中,AlexNet和VGG对LeNet的改进主要在于如何对这两个模块加宽&…

(pytorch-深度学习)包含并行连结的网络(GoogLeNet)

包含并行连结的网络(GoogLeNet) 在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet的网络结构大放异彩。它虽然在名字上向LeNet致敬,但在网络结构上已经很难看到LeNet的影子。GoogLeNet吸收了NiN中网络串联网络的思想&#…

(pytorch-深度学习)批量归一化

批量归一化 批量归一化(batch normalization)层能让较深的神经网络的训练变得更加容易 通常来说,数据标准化预处理对于浅层模型就足够有效了。随着模型训练的进行,当每层中参数更新时,靠近输出层的输出较难出现剧烈变…

(pytorch-深度学习)实现残差网络(ResNet)

实现残差网络(ResNet) 我们一般认为,增加神经网络模型的层数,充分训练后的模型理论上能更有效地降低训练误差。理论上,原模型解的空间只是新模型解的空间的子空间。也就是说,如果我们能将新添加的层训练成恒等映射f(x)xf(x) xf(…

(pytorch-深度学习)实现稠密连接网络(DenseNet)

稠密连接网络(DenseNet) ResNet中的跨层连接设计引申出了数个后续工作。稠密连接网络(DenseNet)与ResNet的主要区别在于在跨层连接上的主要区别: ResNet使用相加DenseNet使用连结 ResNet(左)…

(pytorch-深度学习)语言模型-学习笔记

语言模型 自然语言处理中最常见的数据是文本数据。我们可以把一段自然语言文本看作一段离散的时间序列。 假设一段长度为TTT的文本中的词依次为w1,w2,…,wTw_1, w_2, \ldots, w_Tw1​,w2​,…,wT​,那么在离散的时间序列中: wtw_twt​(1≤t…

(pytorch-深度学习)循环神经网络

循环神经网络 在nnn元语法中,时间步ttt的词wtw_twt​基于前面所有词的条件概率只考虑了最近时间步的n−1n-1n−1个词。如果要考虑比t−(n−1)t-(n-1)t−(n−1)更早时间步的词对wtw_twt​的可能影响,需要增大nnn。 这样模型参数的数量将随之呈指数级增长…

配置jupyter-pytorch深度学习环境

配置jupyter-pytorch深度学习环境 安装anaconda3新建环境,命名为pytorch在虚拟环境里安装jupyter activate pytorch pip install jupyter安装可视化插件,ipywidgets,并且关联 pip install ipywidgets jupyter nbextension enable --py wid…

(pytorch-深度学习)SE-ResNet的pytorch实现

SE-ResNet的pytorch实现 残差块: class Resiual_block(nn.Module):def __init__(self, in, middle_out, out, kernel_size3, padding1):self.out_channel middle_outsuper(Resiual_block, self).__init__()self.shortcut nn.Sequential(nn.Conv2d(nin, nout, ke…