1. 题目
把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。
你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。
示例 1:
输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]示例 2:
输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]限制:
1 <= n <= 11
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/nge-tou-zi-de-dian-shu-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2. 解题
类似题目:
LeetCode 1155. 掷骰子的N种方法(DP)
LeetCode 1223. 掷骰子模拟(DP)
- 建立二维数组dp,
dp[i][j]
表示第i
次投下后,得分为j
的次数 - 那么状态转移方程是 dp[i][j]=∑dp[i−1][j−k],1≤k≤6dp[i][j] = \sum dp[i-1][j-k], 1\le k \le6dp[i][j]=∑dp[i−1][j−k],1≤k≤6
class Solution {
public:vector<double> twoSum(int n) {vector<vector<int>> dp(n, vector<int>(6*n+1, 0));int i, j, k, count = pow(6,n);for(j = 1; j <= 6; ++j)dp[0][j] = 1;for(i = 1; i < n; ++i){for(j = 6*i; j >= i; --j){for(k = 6; k >= 1; --k)dp[i][j+k] += dp[i-1][j];}}vector<double> ans(5*n+1);k = 0;for(j = n; j <= 6*n; ++j)ans[k++] = double(dp[n-1][j])/count;return ans;}
};
- 从上面可看出,状态转移方程仅与上一行有关,可以进行状态压缩
class Solution {
public:vector<double> twoSum(int n) {vector<int> dp(6*n+1, 0);vector<int> temp(6*n+1, 0);int i, j, k, count = pow(6,n);for(j = 1; j <= 6; ++j)dp[j] = 1;for(i = 1; i < n; ++i){for(j = 6*i; j >= i; --j){for(k = 6; k >= 1; --k)temp[j+k] += dp[j];}swap(temp,dp);//更新dp数组for(j = 6*i; j >= i; --j)temp[j] = 0;//temp清零}vector<double> ans(5*n+1);k = 0;for(j = n; j <= 6*n; ++j)ans[k++] = double(dp[j])/count;return ans;}
};